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Abstract

We study a variety of mixed synchronous/incoherent (“chimera”) states in sev-
eral heterogeneous networks of coupled phase oscillators. For each network, the
recently-discovered Ott-Antonsen ansatz is used to reduce the number of variables
in the PDE governing the evolution of the probability density function by one, re-
sulting in a time-evolution PDE for a variable with as many spatial dimensions as
the network. Bifurcation analysis is performed on the steady states of these PDEs.
The results emphasise the commonality of the dynamics of the different networks,
and provide stability information that was previously inferred.
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1 Introduction

The dynamics of coupled oscillator networks has been of great interest for
many years, with numerous applications from the biological and physical
world [1–3]. One of the simplest such networks is the Kuramoto model,
where each oscillator is described by a single angular variable (or phase),
and the oscillators interact via a trigonometric function of phase differ-
ences [4–6]. Recently a number of authors have studied states in networks
of identical Kuramoto oscillators for which some oscillators are synchro-
nised with one another, while the remainder are incoherent [7–15], referred
to by Abrams et al. as “chimera states.” So far, four network topologies have
been considered:

(1) A ring or line of oscillators with nonlocal coupling [12,7,10,9,11,14].
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(2) A two-dimensional array of oscillators with nonlocal coupling [15].
(3) An all-to-all coupled network, but with inhomogeneous coupling

strengths [13].
(4) Two subnetworks, with all-to-all coupling both within and between

subnetworks [8,12].

The first analysis of such states was performed by Kuramoto and Battog-
tokh (KB) [14], who considered a ring of oscillators. These authors defined
an order parameter in terms of the states of the oscillators, wrote the dy-
namics of the oscillators in terms of this order parameter, and solved for the
order parameter in a self-consistent manner, thus showing that such states
existed. Abrams et al. [7,10] then analysed the functional equation derived
by KB [14], showed that it was equivalent, in a particular case, to four scalar
equations and investigated how solutions of these equations changed as pa-
rameters were varied. They found that chimera states bifurcated from states
with no spatial structure. More recently, Omel’chenko et al. [11] and Sethia
et al. [9] performed a similar analysis to KB [14] but including delays.

Shima and Kuramoto [15] considered a two-dimensional array of phase os-
cillators and found spiral waves with “phase-randomised cores.” Most of
the oscillators (involved in the spiral) were synchronised, having the same
frequency but different phases, while the remainder (at the spiral’s core)
were incoherent, with seemingly independent phases. These authors per-
formed a similar analysis to KB [14], deriving an equation to be solved
self-consistently and showing that solutions of this equation agreed with
simulations of the full system.

Ko and Ermentrout [13] considered a network of all-to-all coupled oscil-
lators, but with coupling strengths chosen from a power-law distribution.
They found partially-locked states and analysed them using the self-consis-
tency approach of KB [14].

In refs. [13,11,7,10,12] bifurcation diagrams are shown, with stability of so-
lutions marked. However, these stabilities all seem to have been inferred
rather than calculated. Stable states are found through simulation of the
network of oscillators and the corresponding branch of solutions of the self-
consistent equation is identified as stable. Turning points on curves of so-
lutions are assumed to be saddle-node bifurcations, resulting in unstable
branches of solutions. Abrams et al. [8] were the first to consider the dy-
namics of (i.e. stability of) chimera states, analysing a system comprised
of two sub-networks. They used the recent discovery of Ott and Antonsen
(OA) [16], that certain networks of phase oscillators have low-dimensional
dynamics, to derive a pair of nonlinear ODEs exactly describing chimera
states in their network. The stability of such solutions and their bifurca-
tions were investigated. However, Pikovsky and Rosenblum [17] showed
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using the approach of Watanabe and Strogatz [18] that the results in [8]
were incomplete.

All of the papers [7–11,13–15] considered networks of identical oscillators.
In contrast, Laing [12] considered chimera states in networks of noniden-
tical oscillators (with intrinsic frequencies chosen from a distribution) and
found that — within limits — chimeras are robust to heterogeneity.
Laing [12] also provided evidence to support the observation of Martens
et al. [19] and Pikovsky and Rosenblum [17] that the OA ansatz [16] cor-
rectly predicts the dynamics of Kuramoto-type networks when the oscilla-
tors have randomly-distributed frequencies.

In this paper we use the OA ansatz to derive equations describing the dy-
namics of the networks referred to in points 1-3 above, when the networks
are heterogeneous, and analyse these equations. This work greatly extends
that in [12] and demonstrates that all of the networks in points 1-4 above
can be analysed in the same way.

In Sec. 2 we consider the ring topology of Kuramoto and Battogtokh [14]
and others, putting on a solid footing the stability results of Laing [12],
showing that Hopf bifurcations can occur in such systems, and that Hopf
and saddle-node bifurcations are arranged in parameter space around a
Takens-Bogdanov point. In Sec. 3 we consider a network with power-law
distributed coupling strengths, and recover results similar to those of Ko
and Ermentrout [13]. In Sec. 4 we consider spiral waves in two spatial di-
mensions, deriving a number of new results. Two models similar to that
studied in Sec. 2 are investigated in Sec. 5, and we reproduce some results
of others, although using a different approach. We conclude in Sec. 6.

2 A ring of oscillators

Consider a ring of N phase oscillators with nonlocal coupling [12,7,10,14].
For this network a chimera state refers to a statistically-stationary state for
which oscillators on part of the ring are synchronised while those on the
rest of the ring are incoherent. See Fig. 1 for an example.
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Fig. 1. A snapshot of a chimera solution of the system (1). N = 500, β = 0.2 and the
ωi are taken from a Dirac delta distribution. G(x) = (1 + 0.95 cos x)/(2π).

2.1 Analysis

The system is

dφi
dt

= ωi −
2π

N

N∑

j=1

G

(
2π|i− j|

N

)
cos (φi − φj − β) (1)

for i = 1, . . .N , where φi is an angular variable and the natural frequencies
ωi are chosen from a distribution g(ω). The coupling function G is periodic
with period 2π.

We move to the continuum limit (N → ∞) and assume there is a probabil-
ity density function f(x, ω, φ, t) characterising the state of the system. This
function satisfies the continuity equation [8,6]

∂f

∂t
+

∂

∂φ
(fv) = 0 (2)

where

v = ω −
∫ 2π

0
G(x− y)

∫ ∞

−∞

∫ π

−π
cos [φ− φ′ − β]f(y, ω, φ′, t)dφ′dωdy (3)
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and φ = φ(x) and φ′ = φ(y). Defining the order parameter

R(x, t) ≡
∫ 2π

0
G(x− y)

∫ ∞

−∞

∫ π

−π
e−iφ

′

f(y, ω, φ′, t)dφ′ dω dy (4)

we can rewrite

v = ω −
1

2

[
Rei(φ−β) +Re−i(φ−β)

]
(5)

where an overbar indicates complex conjugate. Following Ott and Anton-
sen [16], we write

f(x, ω, φ, t) =
g(ω)

2π

[
1 +

{
∞∑

n=1

hn(x, ω, t)e
inφ + c.c.

}]
(6)

where “c.c.” indicates the complex conjugate of the previous term, and as-
sume that hn(x, ω, t) = [a(x, ω, t)]n, i.e. that the nth coefficient is a function,
[a(x, ω, t)], raised to the nth power. Substituting (6) into (2) we obtain

∂a

∂t
= −iωa+ (i/2)

[
Re−iβ + R̄eiβa2

]
(7)

where

R(x, t) =
∫ π

−π
G(x− y)

∫ ∞

−∞
g(ω)a(y, ω, t) dω dy (8)

This ansatz, which effectively replaces the infinite set of functions, {hn} by
a single function, a, is non-trivial, and its validity is discussed in Sec. 6.

In this paper we will always assume that the ω are chosen from a Lorentzian
distribution with half-width-at-half-maximum D, i.e.

g(ω) =
D/π

(ω − ω0)2 +D2
=

1

2πi

(
1

ω − ω0 − iD
−

1

ω − ω0 + iD

)
(9)

where ω0 is the centre of the distribution. For non-delayed, autonomous
systems we can always set ω0 = 0 without loss of generality, by moving
to a rotating coordinate frame. With g(ω) from (9) and ω0 = 0 we can use
contour integration to perform the integral over ω in (8), obtaining [12,16]

R(x, t) =
∫ π

−π
G(x− y)a(y,−iD, t) dy (10)

Writing z̃(x, t) = a(x,−iD, t) we have

∂z̃

∂t
= −Dz̃ + (i/2)

[
Re−iβ + R̄eiβ z̃2

]
(11)

where

R(x, t) =
∫ π

−π
G(x− y)z̃(y, t) dy (12)
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As is known [7,12,14], the analysis of (11)-(12) is simplified by moving to a
rotating coordinate frame (rotating in the φ direction, not x). Thus we define
z ≡ z̃eiΩt, where Ω is as yet unknown. We find that z satisfies

∂z

∂t
= (iΩ −D)z + (i/2)

[
R̂e−iβ + R̂eiβz2

]
(13)

where

R̂(x, t) =
∫ π

−π
G(x− y)z(y, t) dy (14)

As other authors have done [7,10,12] we assume thatG(x) = (1+A cosx)/(2π),
and that z is even in x. Then, henceforth dropping the hat on R̂, we have

R(x, t) = z0(t) + z1(t) cosx (15)

where

z0(t) =
1

2π

∫ 2π

0
z(x, t) dx and z1(t) =

A

2π

∫ 2π

0
z(x, t) cos (x) dx (16)

We are interested in stationary solutions of (13)-(14), their stability and the
bifurcations they undergo as parameters are varied. A stationary solution
of (13) is a function z(x) which satisfies

(iΩ −D)z + (i/2)
[
Re−iβ +Reiβz2

]
= 0 (17)

where R is also independent of time. Note that for any solution z of (17),
zeiψ , where ψ is arbitrary, is also a solution of (17). We can compare these
stationary solutions with those already found using a self-consistency ar-
gument [12,7]. Solving (17) for z we obtain

z =
D − iΩ ±

√
(D − iΩ)2 + |R|2

iReiβ
(18)

Choosing the negative square root and taking the spatial average of (18) we
obtain

z0 =
1

2π

∫ 2π

0

D − iΩ −
√

(D − iΩ)2 + |R(x)|2

iR(x)eiβ
dx (19)

which (up to the allowable arbitrary rotation of z in the complex plane [7])
is the same as equation (28) in [12]. Similarly, multiplying both sides of (18)
by A cosx and integrating we obtain

z1 =
A

2π

∫ 2π

0




D − iΩ −

√
(D − iΩ)2 + |R(x)|2

iR(x)eiβ



 cos (x) dx (20)

which (after the same arbitrary rotation mentioned above) is the same as
equation (29) in [12]. The self-consistency argument of others [12,7,10] con-
sists of simultaneously solving (19)-(20) for the scalars z0, z1 and Ω. This
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self-consistency argument shows that chimera states exist, but does not give
any information about the dynamics and stability of such solutions.

Now consider the physical interpretation of solutions of (17). Considering
stationary states in the coordinate frame rotating with angular velocity Ω
and fixing ω = −iD, we see that the probability density function F (φ) at
position x has proportionality

F (φ) ∼
∞∑

n=−∞

[z(x)]neinφ (21)

Note that for this series to converge we must have |z| ≤ 1. Now if z = re−iθ,
where 0 ≤ r < 1, we have

F (φ) =
1 − r2

2π[1 − 2r cos (φ− θ) + r2]
, (22)

the Poisson kernel, whereas if r = 1 we have

F (φ) = δ(φ− θ), (23)

the Dirac delta function. Thus θ gives the value of φ at which the maximum
of F occurs, and r is a measure of the “peakedness” of the distribution;
r = 0 corresponds to a uniform distribution, while r = 1 corresponds to the
Dirac delta. This physical interpretation also shows why solutions of (17)
are invariant under the rigid rotation z 7→ zeiψ mentioned above — it is
just a manifestation of the invariance of the full system (1) under the shift
φi 7→ φi + ψ ∀i.

2.2 Results

We now discuss numerical solutions of (13)-(14). To find them, the domain
is discretised into 500 evenly-spaced points and the corresponding ODEs
are then solved. A typical solution is shown in Fig. 2, where we write z =
re−iθ. Note that θ(x) is only specified up to a shift, so we set θ(0) = 0. Re-
call that values of r close to 1 (at both ends of the domain) correspond to
tightly synchronised oscillators, while lower values of r (in the centre of the
domain) correspond to less coherent oscillators. While the correspondence
with the state in Fig. 1 is not exact, due to the non-zero value of D used
here, the general features are the same.

Figure 3 shows another representation of the solution in Fig. 2. Here we
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Fig. 2. A stable stationary solution of (13)-(14) with Ω = −0.74051 (z = re−iθ).
Other parameters: A = 0.95, β = 0.2,D = 0.004.

show log [F̃ (x, φ)] using a colour code, where

F̃ (x, φ) ≡
1 − r2(x)

2π[1 − 2r(x) cos (φ− θ(x)) + r2(x)]
(24)

(cf. (22)) is the probability density function. Black corresponds to high prob-
ability, white to low. We again set θ(0) = 0. Keeping in mind thatD 6= 0 here,
the correspondence between the state in Fig. 1 and the data in Fig. 3 is clear.

2.2.1 Continuation

Figure 4 shows the results of following solutions of (13)-(14) for fixedD and
A. We plot the difference between the maximum over x of r and the mini-
mum over x of r as a function of β. Stability, as given by the most positive
real part of the eigenvalues of the linearisation of (13) about a solution, is in-
dicated. Note that due to the invariance under a shift in θ there will always
be an eigenvalue of zero. Figure 5 shows r(x) and θ(x) at the four points on
the curve indicated in Fig. 4.

Figure 4 also shows a branch of spatially uniform solutions, and their sta-
bility. For these solutions R = z and from (17) we see that they satisfy the
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Fig. 3. Another representation of the solution shown in Fig. 2. Black corresponds
to high probability, white to low. See text for more details.
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Fig. 4. max (r)−min (r) as a function of β for stationary solutions of (13)-(14). Solid
line: stable; dashed line: unstable. r(x) and θ(x) at the four points indicated are
plotted in Fig. 5. Parameters are D = 0.004, A = 0.95.
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Fig. 5. Top: r(x) and bottom: θ(x) at the four points indicated in Fig. 4. Note that
we fix θ(0) = 0.

complex scalar equation

iΩ −D + (i/2)
[
e−iβ + r2eiβ

]
= 0 (25)

The results in Fig. 4 agree with those in [12], but the new result here is that
the stability of curves in Fig. 4 has been calculated using the eigenvalues
of the linearisation of (13) about a solution, rather than inferred, as was the
case in [12]. In principle we could follow the pitchfork and saddle-node
bifurcations in Fig. 4 as another parameter (e.g. D) was varied, obtaining
results such as those in [12], but we do not do that here.
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Fig. 6. A Hopf bifurcation in (13)-(14) caused by increasing β1 from 0 to 0.1 at
t = 500. The colour encodes r. Other parameters: A = 0.95,D = 0.015, β0 = 0.2.

2.2.2 Hopf bifurcations

One of the questions posed in [8] was: do breathing (i.e. oscillating) chimeras
exist in one-dimensional arrays of oscillators such as the one studied in this
section? Here we answer this question in the affirmative by introducing pa-
rameter heterogeneity, letting β(x) = β0 − β1 cos (x) in (13)-(14). Figure 6
shows an apparent Hopf bifurcation as β1 is abruptly increased from zero.
To verify that this bifurcation also occurs in the network of oscillators, (1),
we performed the same change in parameters and the results are shown in
Fig. 7. The top panel shows sin (φi) as a function of time and the bottom
panel shows |Ri| as a function of time, where Ri is the spatially-discrete
version of R(x, t), defined using (4) as

Rk(t) =
2π

N

N∑

j=1

G

(
2π|k − j|

N

)
e−iφj (26)

The onset of oscillations in the discrete network is clear.

Figure 8 shows the real part of the rightmost few eigenvalues of the lin-
earisation of (13) about a solution similar to the initial condition shown
in Fig. 6, as a function of β1. The crossing of the imaginary axis by a pair
of complex conjugate eigenvalues as β1 increases through approximately
0.085 is clear. (The imaginary part of these eigenvalues, not shown, varies
between approximately 0.13i and 0.15i over the parameter range shown.)
The zero eigenvalue mentioned above is also evident.

In Fig. 9 we show the curves of Hopf bifurcations in the (β0, β1) plane.
Also shown is the continuation of the saddle-node bifurcation that occurs
when β1 = 0 (see Fig. 4). These curves meet at a Takens-Bogdanov (double-
zero eigenvalue) bifurcation. Generically, one expects a curve of homoclinic
bifurcations to emanate from a Takens-Bogdanov point [20,21]. Figure 10
shows evidence that such a curve does exist in this case, lying above the
curve of Hopf bifurcations, just as in Fig. 4 of [8]. In Fig. 10 we show r(π)
(i.e. in the middle of the domain) as a function of time for successively in-
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Fig. 9. Curves of Hopf (dashed) and saddle-node (solid) bifurcations of nontrivial
solutions of (13)-(14). Nontrivial solutions exist to the left of the saddle-node curve
and are stable below the Hopf curve. Other parameters: A = 0.95,D = 0.015.

creasing values of β1, when β0 = 0.2, i.e. moving up a vertical line in Fig. 9.
The period of oscillation increases as β1 increases and for even higher val-
ues of β1 the system moves to a stationary, nearly spatially-uniform, state
(not shown). Both of these are consistent with a homoclinic bifurcation. The
homoclinic bifurcation could presumably be followed using the package
HOMCONT [22].

Note that by assuming that z is even in x, we are selecting one out of a con-
tinuum of states, each related by a rotation around the ring, thus “pinning”
the solution. If this condition was relaxed it may be possible to obtain bifur-
cations to drifting states, for which the pattern moves at a constant speed
around the ring [23].

In summary, we have used the OA ansatz to re-establish a result of [12],
namely that the steady states of (13)-(14) satisfy (19)-(20). New results in-
clude the derivation of the stabilities shown in Fig. 4, the investigation of
Hopf bifurcations, and the two-parameter diagram shown in Fig. 9.

3 Inhomogeneous coupling

We now consider another type of network, with all-to-all coupling and het-
erogeneous coupling strengths. Ko and Ermentrout [13] recently studied
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Fig. 10. A plot of r(π) as a function of time for (A): β1 = 0.09, (B): β1 = 0.1, (C):
β1 = 0.1125. Other parameters: A = 0.95,D = 0.015, β0 = 0.2.

the following model

dφi
dt

= ωi +
Ki

N

N∑

j=1

H(φj − φi) (27)

where H(φ) = sin (φ− β) + sin β and the Ki are taken from a truncated
power-law distribution Γ(K), where

Γ(K) =





CK−γ for K ∈ [Kmin, Kmax]

0 otherwise
(28)

and C is a normalising factor such that
∫∞
0 Γ(K)dK = 1. As before, let the ωi

be chosen from the probability density function g(ω). These authors found
that for certain ranges of parameters (and identical ωi) partial locking, in
which some fraction of the oscillators synchronise, occurs. An example of
such partial locking is shown in Fig. 11, where we have ordered the os-
cillators by their K value. We see that it is oscillators with low K which
synchronise, oscillators with higher K have higher average frequency, and
that the synchronous oscillators do not rotate with the intrinsic frequency
of the oscillators, ωi, which are all zero in this case.
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Fig. 11. Top: Ki versus oscillator index. Middle: sinφi (colour–
coded) over a time interval of length 200. Bottom: a snapshot of
the phases φi. Transients have been removed. Other parameters:
N = 500,Kmin = 0.1,Kmax = 5, γ = 1.5, β = 0.4π, ωi = 0 ∀i.

3.1 Analysis

We now analyse the continuum limit of (27). The analysis is analogous to
that in Sec. 2.1, but the variable x is now replaced by K. First rewrite (27) as

dφi
dt

= ωi +Ki sin β +
Ki

N

N∑

j=1

sin(φj − φi − β) (29)
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In the continuum limit, we again assume the existence of a probability den-
sity function f(K,ω, φ, t) which satisfies the continuity equation

∂f

∂t
+

∂

∂φ
(fv) = 0 (30)

where

v = ω +K sin β +K
∫ ∞

0
Γ(K)

∫ ∞

−∞

∫ 2π

0
sin [φ′ − φ− β]f(K,ω, φ′, t)dφ′ dω dK

(31)
Defining the (scalar) order parameter

R(t) =
∫ ∞

0
Γ(K)

∫ ∞

−∞

∫ 2π

0
eiφ

′

f(K,ω, φ′, t)dφ′ dω dK (32)

we can write

v = ω +K sin β +
K

2i

[
Re−i(φ+β) − Rei(φ+β)

]
(33)

As before, we use the OA ansatz to write

f(K,ω, φ, t) =
g(ω)

2π

[
1 +

{
∞∑

n=1

[a(K,ω, t)]neinφ + c.c.

}]
(34)

and substitute this into (30) and (32) to obtain

∂a

∂t
= −i(ω +K sin β)a+ (K/2)

[
Reiβ − Re−iβa2

]
(35)

where

R(t) =
∫ ∞

0
Γ(K)

∫ ∞

−∞
g(ω)a(K,ω, t) dω dK (36)

If

g(ω) =
D/π

ω2 +D2
(37)

then

R(t) =
∫ ∞

0
Γ(K)a(K,−iD, t) dK (38)

Writing z̃(K, t) = a(K,−iD, t) we have

∂z̃

∂t
= −(D + iK sin β)z̃ + (K/2)

[
Reiβ − Re−iβ z̃2

]
(39)

where

R(t) =
∫ ∞

0
Γ(K)z̃(K, t) dK (40)

Moving to a rotating coordinate frame: z ≡ z̃eiΩt we see that z satisfies

∂z

∂t
= −(D + i[K sin β − Ω])z + (K/2)

[
R̂eiβ − R̂e−iβz2

]
(41)
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where

R̂(t) =
∫ ∞

0
Γ(K)z(K, t) dK (42)

Let us now compare our results with those of Ko and Ermentrout [13], de-
rived using the self-consistency arguments of Kuramoto [14,7]. Ko and Er-
mentrout used identical oscillators, so set D = 0. Then, dropping the hat on

R̂, steady states of (41) satisfy

KRe−iβz2 + 2i[K sin β − Ω]z −KReiβ = 0 (43)

Solving for z and taking the positive square root we obtain

z =
−i[K sin β − Ω] +

√
K2|R|2 − (K sin β − Ω)2

KRe−iβ
(44)

At stationarity the phase of R is arbitrary so we can assume that R is real.
Using (42) we obtain

R2 = e−iβ
∫ ∞

0
Γ(K)




i[K sin β − Ω] +

√
K2R2 − (K sin β − Ω)2

K



 dK (45)

which, after writing ∆ = −Ω, is eqn. (17) in [13]. We note that z = 0 is
always a solution of (41)-(42).

3.2 Results

Fig. 12 (top) shows a typical stationary solution of (41)-(42). Although these
equations are solved on an evenly-spaced grid between Kmin and Kmax we
plot the variables as a function of χ, where

χ = h(K) ≡
∫ K

Kmin

Γ(s) ds (46)

Because 0 < Γ(K), h is a monotonically increasing function with h(Kmin) =
0 and h(Kmax) = 1. Essentially, χ is the continuous analogue of index in (27),
once the oscillators have been sorted by their Ki values, enabling easy com-
parison with results such as those in Fig. 11. The bottom panel of Fig. 12

shows, using colour, log [F̃ (χ, φ)], where

F̃ (χ, φ) ≡
1 − r2(χ)

2π[1 − 2r(χ) cos (φ− θ(χ)) + r2(χ)]
(47)

Although the comparison with Fig. 11 is not exact, due to the non-zero
value of D, the main features are the same.
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Fig. 12. Top: A stable stationary solution of (41)-(42) with Ω = 0.069031

(z = re−iθ). We have set θ(0) = 0. Bottom: log [F̃ (χ, φ)] (47) in-
dicated with a colour code (black high, white low). Other parameters:
Kmin = 0.1,Kmax = 5, γ = 1.5, β = 0.4π,D = 0.0001.

Figure 13 shows the result of continuing solutions of (41)-(42) as β is varied,
for two different values of D, with stability indicated. The upper (lower)
stable curves in the upper (lower) panel correspond to the solutions found
by [13], while the other stable branches with |R| ≈ 1 correspond to the
in phase synchronous states found by them. (Note that these authors used
identical oscillators, i.e. D = 0). The branches terminate for large β at pitch-
fork bifurcations involving the z = 0 (i.e. completely incoherent) state that
is always a solution. This state is stable for β larger than the values at which
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Fig. 13. Curves of stationary solutions of (41)-(42) for D = 0.01 (leftmost curves)
and D = 0.003 (rightmost curves). Top: Ω and bottom: |R| as a function of β. Solid
line: stable, dashed line: unstable. Solutions at the points marked are shown in
Fig. 14.

the curves in Fig. 13 terminate. This bifurcation diagram has been verified
by simulating the original network (27) (not shown). Figure 14 shows r(χ)
and θ(χ) at the three points indicated in Fig. 13.

All of the results in this section are new, although Ko and Ermentrout [13]
derived (45) using the self-consistency argument of Kuramoto and Battog-
tokh [14].
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Fig. 14. Top: r(χ) and bottom: θ(χ) at the three points indicated in Fig. 13. We have
set θ(0) = 0.

4 Spiral waves on a 2D lattice

We now consider spiral waves, a generic pattern in two-dimensional active
media [24–26]. Shima and Kuramoto [15] considered the following system:

∂φ

∂t
= ω −K

∫
G(|x − y|) sin [φ(x) − φ(y) + α]dy (48)

in R
2 where

G(r) =
1

2π
K0(r) (49)
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andK0 is the modified Bessel function of the second kind. They found spiral
waves with “phase-randomised cores,” and showed their existence using
the self-consistency argument of Kuramoto [14]. Kim et al. [27] also found
spiral waves with phase-randomised cores in two-dimensional arrays of
coupled phase oscillators, and it is their system that we study here. The
equations are

dφij
dt

= ωij +
1

Nij(η)

∼∑

mn

sin (φmn − φij − α) (50)

for 1 ≤ i ≤ N, 1 ≤ j ≤ N , where (i, j) indicates the position on the lat-
tice and

∑∼
mn indicates a sum over all lattice points within a distance η of

the point (i, j); there are Nij(η) of these. Note that we do not use periodic
boundary conditions, soNij(η) will be smaller for points near the boundary
than for points well away from the boundary. A snapshot of a typical spiral
for η = 7 is shown in Fig. 15. The unsynchronised oscillators at the spiral
core are clearly visible.

While spiral waves in systems with local interactions have been studied by
a number of authors [24,25,28], their behaviour in systems with non-local
interactions, as is the case here, is much less well-studied [29].

4.1 Analysis

We do not move to a spatial continuum, but as usual assume the existence of
a probability density function fij(ω, φ, t) which satisfies the usual continuity
equation (2), where

v = ωij +
1

Nij(η)

∼∑

mn

∫ ∞

−∞

∫ π

−π
sin (φmn − φij − α)fmn(ω, φmn, t) dφmn dω (51)

Defining the order parameter

Rij =
1

Nij(η)

∼∑

mn

∫ ∞

−∞

∫ π

−π
eiφmnfmn(ω, φmn, t) dφmn dω (52)

we see that

v = ωij +
1

2i

[
Rije

−i(φij+α) − Rije
i(φij+α)

]
(53)

Writing

fij(ω, φ, t) =
g(ω)

2π

[
1 +

{
∞∑

n=1

[aij(ω, t)]
neinφ + c.c.

}]
(54)

we find that

daij
dt

= −iωijaij + (1/2)
[
Rije

iα − Rije
−iαa2

ij

]
(55)
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Fig. 15. Snapshot of a spiral wave (sin φij is shown colour-coded) for (50).
N = 50, α = 0.2π, η = 7 and ωij = 0.55 ∀i, j.

where

Rij =
1

Nij(η)

∼∑

mn

∫ ∞

−∞
g(ω)amn(ω, t) dω (56)

Using the usual g(ω) (37) we define z̃ij(t) = aij(−iD, t) so that

dz̃ij
dt

= −Dz̃ij + (1/2)
[
Rije

iα −Rije
−iαz̃2

ij

]
(57)

where

Rij =
1

Nij(η)

∼∑

mn

z̃mn(t) (58)

Writing zij = z̃ije
iΩt we finally have

dzij
dt

= −(D + iΩ)zij + (1/2)
[
R̂ije

iα − R̂ije
−iαz2

ij

]
(59)

where

R̂ij =
1

Nij(η)

∼∑

mn

zmn(t) (60)
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Fig. 16. Stable steady state of (59)-(60) with Ω = 0.50295 and D = 0.03. Top: rij ;
bottom: sin θij (colour-coded), where zij = rije

−iθij . N = 50, α = 0.2π, η = 7.

4.2 Results

Figure 16 shows a stable steady state of (59)-(60) with D = 0.03. We see
that for sites away from the centre of the domain, |zij| ≈ 1, corresponding
to highly synchronised oscillators, but there is a central core with |zij| sig-
nificantly less than 1, corresponding to the incoherent oscillators. Note that
the phase of zij shows a typical spiral, with a phase singularity in the centre,
in contrast to the spiral in the original network (Fig. 15).
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Fig. 17. Steady states of (59)-(60) with D = 0.03. Solid line: stable; dashed line:
unstable. Solutions at the points marked are shown in Fig. 18.

4.2.1 Varying parameters

Varying α we obtain the family of spiral waves shown in Fig. 17. Several
representative solutions are shown in Fig. 18. We see that as α is decreased,
the width of the incoherent core decreases. (This was verified by simula-
tions of (50), not shown.) Note that the square domain has a significant in-
fluence on the solution for large α, and further investigations of this system
should probably use a circular domain [29,25].

4.2.2 Hopf bifurcation

We can also cause Hopf bifurcations in (59)-(60) by making α spatially-
dependent, as in Sec. 2.2.2. We set αij = α0 + α1Φij , where

Φij = exp
(
−5

{
[(2i− 51)/49]2 + [(2j − 51)/49]2

})
(61)

i.e. Φij is a Gaussian, centred at the centre of the domain (recall thatN = 50).
In Fig. 19 we have plotted r along a horizontal slice through the centre of
the domain, and show the effect of abruptly switching α1 from 0 to 0.05π.
The “spot” of low r simultaneously moves away from and starts to rotate
about the centre of the domain, and the dynamics are analogous to those
resulting from a Hopf bifurcation of a normal spiral wave [26,29]. Detect-
ing and following the Hopf bifurcation, as in Sec. 2.2.2, should be possible,
although time-consuming. The presence of this Hopf bifurcation was also
verified in the original network (50) (not shown).

All of the results in the section, obtained using the OA ansatz, are new.
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Fig. 18. Steady states of (59)-(60) at the three points indicated in Fig. 17. Left col-
umn: rij (black: high; white: low) ; right column: sin θij .

5 Other models

We now consider several models which are similar to that studied in Sec. 2,
although both include delays.
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Fig. 19. r25j when α1 is switched from 0 to 0.05π at t = 1000. D = 0.02, α0 = 0.2π.

5.1 Omel’chenko et al.

Omel’chenko et al. [11] studied the model

∂φ

∂t
= ω−

C

2

∫ 1

−1
sin [φ(x, t) − φ(y, t)] dy−

Kρ(x)

2

∫ 1

−1
sin [φ(x, t) − φ(y, t− τ)] dy

(62)
where

ρ(x) =
ae−a|x|

1 − e−a
(63)

and 0 < a.

5.1.1 Analysis

Define a density function f(x, ω, φ, t) which satisfies (2) where

v=ω −
C

2

∫ 1

−1

∫ ∞

−∞

∫ π

−π
sin [φ(t) − φ′(t)]f(y, ω, φ′, t) dφ′ dω dy

−
Kρ(x)

2

∫ 1

−1

∫ ∞

−∞

∫ π

−π
sin [φ(t) − φ′(t− τ)] f(y, ω, φ′, t) dφ′ dω dy (64)

where φ = φ(x) and φ′ = φ(y). Defining the (spatially-independent) order
parameter

R(t) =
1

2

∫ 1

−1

∫ ∞

−∞

∫ π

−π
eiφ

′(t)f(y, ω, φ′, t)dφ′ dω dy (65)

we can rewrite

v = ω −
C

2i

[
R(t)eiφ −R(t)e−iφ

]
−
Kρ(x)

2i

[
R(t− τ)eiφ − R(t− τ)e−iφ

]
(66)

Writing

f(x, ω, φ, t) =
g(ω)

2π

[
1 +

{
∞∑

n=1

[a(x, ω, t)]neinφ + c.c.

}]
(67)
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we find that a satisfies

∂a

∂t
= −iωa+

1

2

[
CR(t) +Kρ(x)R(t− τ) − a2 {CR(t) +Kρ(x)R(t− τ)}

]

(68)
where

R(t) =
1

2

∫ 1

−1

∫ ∞

−∞
g(ω)ā(y, ω, t) dω dy (69)

Because we are considering a delay system we can no longer assume with-
out loss of generality that the mean of g(ω) is zero. We use g(ω) given by (9),
and defining z̃(x, t) = a(x, ω0 − iD, t) we obtain

∂z̃

∂t
= −(iω0+D)z̃+

1

2

[
CR(t) +Kρ(x)R(t− τ) − z̃2 {CR(t) +Kρ(x)R(t − τ)}

]

(70)
where

R(t) =
1

2

∫ 1

−1

¯̃z(t) dy (71)

and letting z = z̃eiΩt we obtain

∂z

∂t
=−(D + i[ω0 − Ω])z

+
1

2

[
CR̂(t) +Kρ(x)R̂(t− τ)eiΩτ

− z2
{
CR̂(t) +Kρ(x)R̂(t− τ)e−iΩτ

}]
(72)

where

R̂(t) =
1

2

∫ 1

−1
z̄(t) dy (73)

5.1.2 Results

Fig. 20 shows snapshots of solutions of the spatially-discretised version
of (62) for two different values of τ , found using the Matlab routine dde23.
Other parameters, as used by [11], are a = 1, C = 0.1π,K = π, ω = ω0 = 2π.
In Fig. 21 we show stable stationary solutions of (72)-(73) for the same pa-
rameter values as in Fig. 20, for D = 0. We see excellent agreement between
the results for a finite network and those from the analysis of the corre-
sponding PDE.
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Fig. 20. Snapshots of solutions of the spatially-discretised version of (62) for τ = 0.3
(left) and τ = 0.6 (right). Compare with Fig. 1 in[11]. 101 oscillators are used. See
text for other parameters.
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Fig. 21. Stable stationary solutions of (72)-(73) for τ = 0.3,Ω = 4.0565 (left) and
τ = 0.6,Ω = 8.4981 (right) and D = 0. Same parameters as in Fig. 20. We have set
θ(0) = 0 to match the results in Fig. 20.

5.2 Sethia et al.

Sethia et al. [9] studied the model

∂φ

∂t
= ω −

∫ L

−L
G(x− y) sin [φ(x, t) − φ(y, t− |x− y|/V ) + α] dy (74)

on a ring of circumference 2L, where

G(x) =
ke−k|x|

2(1 − e−kL)
(75)
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and V can be thought of as the speed of propagation of signals around the
ring.

5.2.1 Analysis

Defining a density function f(x, ω, φ, t) results in the usual continuity equa-
tion (2) where

v = ω−
∫ L

−L
G(x−y)

∫ ∞

−∞

∫ π

−π
sin [φ(t) − φ′(t− |x− y|/V ) + α]f(y, ω, φ′, t)dφ′dωdy

where φ = φ(x) and φ′ = φ(y). Defining the order parameter

R(x, t) ≡
∫ L

−L
G(x− y)

∫ ∞

−∞

∫ π

−π
eiφ

′(t−|x−y|/V )f(y, ω, φ′, t)dφ′ dω dy (76)

we have

v(φ, t) = ω −
1

2i

[
Rei(φ+α) − Re−i(φ+α)

]

Writing

f(x, ω, φ, t) =
g(ω)

2π

[
1 +

{
∞∑

n=1

[a(x, ω, t)]neinφ + c.c.

}]
(77)

we find
∂a

∂t
= −iωa+

1

2

[
Reiα − Re−iαa2

]
(78)

where

R(x, t) =
∫ L

−L
G(x− y)

∫ ∞

−∞
g(ω)a(y, ω, t− |x− y|/V ) dω dy (79)

Using g(ω) from (9) and defining z̃(x, t) = a(x, ω0 − iD, t) we obtain

∂z̃

∂t
= −(iω0 +D)z̃ +

1

2

[
Reiα − Re−iαz̃2

]
(80)

where

R(x, t) =
∫ L

−L
G(x− y)z̃(y, t− |x− y|/V ) dy (81)

and letting z = z̃eiΩt we have

∂z

∂t
= −(D + i[ω0 − Ω])z +

1

2

[
R̂eiα − R̂e−iαz2

]
(82)

where

R̂(x, t) =
∫ L

−L
G(x− y)z(y, t− |x− y|/V )e−iΩ|x−y|/V dy (83)

In the usual way, steady states of (82) when D = 0 are the same as those
found using the self-consistency argument, see eqn. (6) in [9].
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Fig. 22. A solution of the spatially-discretised version of (74). Top: sin φ
(colour-coded) over a time interval of length 20. Bottom: a snapshot of the
φ. We have discretised with 256 spatial points and other parameters are
ω = 1.1, α = 0.9, V = 1/10.24, k = 4, L = 1/2.

5.2.2 Results

In Fig. 22 we show a typical solution of the spatially-discretised version
of (74), using the same parameters as [9]. We see four coherent regions (the
domain is periodic in x), adjacent ones of which are out of phase, separated
by regions of incoherence.

In Fig. 23 we show a stationary solution of (82)-(83) for D = 0 and the same
other parameters as in Fig. 22. The correspondence with Fig. 22 is excellent.
As noted by [9], the solution shown in Fig. 23 is only stable in the space of
spatially-even functions. If this symmetry is not preserved, (82)-(83) have
stable travelling wave solutions, for which r is constant and θ is a linearly
increasing function of space and time (not shown).

6 Discussion

In this paper we have considered a number of infinite networks of cou-
pled heterogeneous phase oscillators. For each network we used the OA
ansatz [16] to derive a PDE, the solutions of which describe the dynamics
of the network. Of course, for each network a more general such PDE exists:
the continuity equation (2). However, the power of the OA ansatz is that it
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Fig. 23. A stationary solution of (82)-(83) for D = 0 and Ω = 0.90869.
Top: r(x); bottom: θ(x) (z = re−iθ). Other parameters are
ω = 1.1, α = 0.9, V = 1/10.24, k = 4, L = 1/2.

reduces by one the number of variables in the PDE that needs to be stud-
ied. For example, for the model considered in Sec 2, eqn. (2) is a PDE for f ,
which is a function of four variables, x, ω, φ and t. The OA ansatz removes
the dependence on φ and we obtain the PDE (7) for a function of only three
variables. The dependence on ω can be integrated out by choosing g(ω) to
be, for example, a Lorentzian or Dirac delta function, and we obtain (13), a
PDE for z(x, t). Similarly in Sec. 3 we obtain the PDE (41) for the variable z,
which is a function of only K (a space-like variable) and t, and in Sec. 4 we
obtain the spatially-indexed ODEs (59).

Effectively, we have greatly generalised the results of Marvel and Strogatz [30],
who showed that any system of N identical oscillators governed by the dy-
namics

dφj
dt

= µe−iφj + λ+ µeiφj (84)

could be solved using the OA ansatz: assume a density

ρ(φ, t) =
1

2π

[
1 +

∞∑

n=1

{
α(t)eiφ

}n
+ c.c

]
(85)

Then α satisfies the ODE

dα

dt
= −i(λα + µ+ µα2) (86)

Marvel and Strogatz stated that the OA ansatz requires identical oscillators
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and that f and g be independent of the oscillator index. In fact, we have
shown here that we can relax both of these assumptions and still use the
OA ansatz, but the price we pay is that we now have a PDE (or N ODEs).
For example, in Sec. 2 we find the velocity of each oscillator is given by (5):

v = ω −
[
Rei(φ−β) + R̄e−i(φ−β)

]
/2 (87)

which is of the form (84), with λ = ω and µ = −Reiβ/2. Here, R is a function
of space (or oscillator index, in the discrete case) and we obtain the PDE (7)

∂a

∂t
= −iωa+ (i/2)

[
Re−iβ + R̄eiβa2

]
(88)

where a is now a function of space too. Similarly, in Sec. 3 we obtain (33)

v = ω +K sin β +
K

2i

[
Re−i(φ+β) − Rei(φ+β)

]
(89)

where R is the same for each oscillator. However, K is different for each os-
cillator (or K is a continuous variable, in the continuum limit) so we obtain
the PDE (35):

∂a

∂t
= −i(ω +K sin β)a+ (K/2)[Reiβ − Re−iβa2] (90)

where a is a function of K as well as t.

We have only considered solutions of the PDEs derived in this paper when
D (the width of the distribution from which intrinsic frequencies are drawn)
is not zero (though see Figs. 21 and 23 for exceptions). The correctness of us-
ing the OA ansatz to describe stable states of the networks studied here has
been the subject of recent discussion [17,30,19,31]. For example, Pikovsky
and Rosenblum [17] recently demonstrated using the Watanabe-Strogatz
(WS) ansatz [18] that the OA ansatz did not completely describe all of the
dynamics possible in the network studied by Abrams et al. [8]. However,
there is mounting numerical evidence that the OA ansatz does in fact de-
scribe all attracting (and, presumably, hyperbolic) states, if the oscillators
in the network are non-identical [12,31,16,17,19]. The recent preprint by Ott
and Antonsen [32] seems to put these observations on a sound theoretical
basis. To correctly study the networks considered in this paper when the
oscillators are identical it may be necessary to generalise the WS ansatz to
these topologies [33], or it may be that the dynamics really are described by
equations such as (13), (41), (59), (72) and (82) withD = 0. We leave the con-
nection between the WS and OA ansätze, and the analysis of the equations
just mentioned when D = 0 for future work.

Regarding the dependence of the results on the specific form of g(ω): other
distributions with similar pole structures in the complex plane could be
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used, resulting in similar (although more complicated) equations [12,16].
Numerical results with other distributions (e.g. Gaussian) suggest that there
is nothing special about the Lorentzian distribution [12,19,31].

In summary, our main result is the demonstration that a number of differ-
ent networks, each capable of supporting “chimera” (and other) states, can
be analysed using the same framework. We have discovered new types of
behaviour, and put on a solid footing the stability results inferred by oth-
ers [13,11,7,10,12]. The results presented here are by no means complete;
further analysis of the PDEs derived should result in the discovery of more
interesting behaviour of coupled oscillator networks.
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