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Abstract

We study a network of 500 globally-coupled modified van der Pol oscillators. The
value of a parameter associated with each oscillator is drawn from a normal distri-
bution, giving a heterogeneous network. For strong enough coupling the oscillators
all have the same period, and we consider periodic forcing of the network when
it is in this state. By exploiting the correlations that quickly develop between the
state of an oscillator and the value of its parameter we obtain an approximate low-
dimensional description of the system in terms of the first few coefficients in a poly-
nomial chaos expansion. Standard bifurcation analysis can then be performed on
the low-dimensional system which results from this computational coarse-graining,
and the results obtained from this predict very well the behaviour of the high-
dimensional system for any set of realisations of the random parameter. Situations
in which the method begins to fail are also discussed.
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1 Introduction

Synchronisation is a common phenomenon in biology and elsewhere [1,16,29,33].
It is often studied by investigating the conditions under which oscillators in a
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particular network will synchronise [3,25]. Periodic forcing of systems is also
ubiquitous [16,39], and so it is natural to study the entrainment of a net-
work of coupled oscillators by a periodic forcing function. Many authors have
studied small networks of two or three non-identical oscillators [3], and larger
networks of oscillators that may have some symmetry [18,25] or a particular
form of coupling [34]. The continuum limit in which there exists an infinite
number of oscillators has also been studied in detail and many results are
known for this case [2,4,17,24,38]. However, it is known that finite networks
can show behaviour that does not occur in the continuum limit [4,12]. In many
situations, finite networks are the most realistic way to model a physical sys-
tem [6,12,35]. Results for large, finite networks will thus help bridge the gap
between small network dynamics (for which bifurcation analysis is straightfor-
ward) and those for an infinite number of oscillators (where statistical physics
provides the appropriate tools).

In this paper we consider a large but finite heterogeneous network of globally-
coupled oscillators, which are collectively periodically forced. However, we
do not analyse the system exactly; instead we analyse a low-dimensional de-
scription of it. This is the “equation-free” approach developed by Kevrekdis
et al. [23]. The results here extend those of Moon et al. [30,32], obviating
a reduction to phase oscillators: we consider two-variable (rather than sin-
gle variable) oscillators, capable of undergoing Hopf bifurcations; we consider
periodic forcing of the network, and we perform bifurcation analysis on the
low-dimensional description of the system to understand how the behaviour
of the full system changes as parameters are varied. We will not take the con-
tinuum limit as the number of oscillators tends to infinity, but instead analyse
the realistic case of a finite number of oscillators.

The system we study is

dxi

dt
= yi − xi

[

x2
i /3 − (φ + βµi)

]

+ x2
i /2 −

ǫ

N

N
∑

j=1

(xi − xj) (1)

dyi

dt
=−xi + A sin (ωt) (2)

for i = 1, . . . , N , where N is the number of oscillators in the network. For
most of this paper we set N = 500. The oscillators are van der Pol oscil-
lators [19] with an extra term (x2

i /2) which breaks the internal symmetry
[(x, y) → (−x,−y)] of each individual oscillator. These oscillators were cho-
sen as being “typical” in the sense of not having any particular properties,
e.g. symmetry. For β = 0, an uncoupled oscillator (ǫ = 0) undergoes a super-
critical Hopf bifurcation as φ increases through zero, with angular frequency
1. The angular frequency for an isolated oscillator as a function of φ is shown
in Fig. 1.
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The µi are taken from a normal distribution with mean 0 and standard devia-
tion 1. (As discussed below, the methodology can be used with other distribu-
tions.) If β 6= 0 the network is heterogeneous, and each oscillator, if uncoupled,
would have a different angular frequency determined by the value of φ + βµi.
When A = 0, for β small enough, φ of moderate size and ǫ large enough,
the oscillators synchronise in the sense of having the same period. Note that
oscillators i and j cannot synchronise in the sense of xi(t) = xj(t) for all t
unless µi = µj. In this synchronised state the attractor of the system is a
periodic orbit, which could be parametrised by a periodic variable, say θ(t).
The variables x1, . . . xN , y1, . . . , yN could each then be written as functions of
θ. This description would no longer be valid if one or more of the oscillators
“unlocked” from the group.

We want to study the system in this synchronised state, but do not want to
keep track of all the 2N variables x1, . . . xN , y1, . . . , yN . Instead, we describe
the state of the system by a small number of variables. We cannot easily
derive an equation that governs the dynamics of these variables, but by re-
peatedly mapping between the two levels of description of the system we can
numerically evaluate the results of integrating these unavailable equations; we
can also find their collectively periodic states and their dependence on pa-
rameters, without ever obtaining the reduced equations in closed form. This
low-dimensional description results in computational savings by, for example,
giving a much smaller Jacobian matrix.

If the system is in this synchronised state and we increase A from zero, it will
become periodically driven and it may be possible for the oscillators to lock
with the driving frequency [16]. The latter part of this paper will consider
this phenomenon in detail, but we first discuss the particular low-dimensional
description of the forced system (1)-(2) used here, and how it can be used in
projective integration to speed up direct simulation of this system.

2 A low-dimensional description

The main idea behind the low-dimensional description used here depends on
correlations that rapidly develop between xi, yi and the value of µi in the
parameter regime where synchronization eventually prevails. This is demon-
strated in Fig. 2 where we plot the xi and yi as functions of µi for a particular
realisation of the µi at three different times. We see that after just two peri-
ods of the forcing strong correlations develop between the state of an oscillator
and its µi value. We will see that these correlations occur whether or not the
network is synchronised with the forcing.

These correlations allow us to expand the x and y in certain classes of poly-
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nomials of µ [30]. Xiu and Karniadakis [40] showed that if the µi are normally
distributed, Hermite polynomials are the best in the sense of giving the fastest
convergence of the expansion. For other µ distributions, the expansion con-
verges fastest for other polynomial types; for example, if the µi are taken from
a uniform distribution then Legendre polynomials are appropriate, and if a
gamma distribution is used then Laguerre polynomials are best. Using other
polynomials corresponds to the so-called Generalised Polynomial Chaos, or
GPC [40]. We write

x(t, µ) =
q

∑

j=0

aj(t)Hj(µ) (3)

y(t, µ)=
q

∑

j=0

bj(t)Hj(µ) (4)

where Hj is the jth Hermite polynomial [H0(x) = 1, H1(x) = 2x, H2(x) =
4x2−2, . . .]. This expansion is known as a polynomial chaos expansion [30], and
the ai and bi are the polynomial chaos coefficients. For a specific realisation of
the µi, we have xi(t) = x(t, µi) and similarly for the yi(t). Our low-dimensional
description then involves the 2(q + 1) coefficients a0, . . . aq, b0, . . . , bq. This de-
scription is approximate, and the approximation becomes better as q is in-
creased. Given xi and yi for a particular set of µi, the ai are found by min-
imising the quantity

N
∑

i=1



xi −
q

∑

j=0

ajHj(µi)





2

(5)

and the bi are found by minimising

N
∑

i=1



yi −
q

∑

j=0

bjHj(µi)





2

. (6)

This is easily done in Matlab using the “backslash” operator to solve an overde-
termined linear system. The operator from the xi and yi to the ai and bi is
referred to as the “restriction” operator. Similarly we construct a “lifting”
operator: given the ai(t) and bi(t) and a particular realisation of the µi we
have

xi(t)=
q

∑

j=0

aj(t)Hj(µi) (7)

yi(t)=
q

∑

j=0

bj(t)Hj(µi) (8)
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Armed with these two operators we can now proceed to numerically solve the
unavailable equation for the polynomial chaos coefficients.

3 Coarse Projective Integration

Coarse projective integration entails accelerating the simulation of a high-
dimensional system by projecting forward in time using only the variables
in a low-dimensional description of the system. This is accomplished by oc-
casionally performing short bursts of full simulation of the high-dimensional
system in order to obtain the numerical information (estimation of the time-
derivatives of the low dimensional description variables) required to perform
accurate projections [23,30,32]. We can use the low-dimensional description
in the previous section for coarse projective integration as follows. For conve-
nience, let the high-dimensional description be the variable

X = [x1, . . . , xN , y1, . . . , yN ] ∈ R
2N (9)

and the low-dimensional polynomial chaos coefficient description be the vari-
able

Z = [a0, . . . , aq, b0, . . . , bq] ∈ R
2(q+1). (10)

Given X(0), integrate (1)-(2) forward for N1 steps of size δt. Calculate Z at
some or all of the times t = 0, δt, 2δt, . . . , N1δt using the restriction opera-
tor. Use these values of Z to extrapolate the values of Z to a time N2δt in
the future, i.e. to time (N1 + N2)δt. Lift from the value of Z((N1 + N2)δt)
to X((N1 + N2)δt) as detailed above. Restart the integration of (1)-(2) us-
ing X((N1 + N2)δt) as the initial condition and integrate for a further N1

time steps. Restrict to Z and repeat the procedure. If the cost of restrict-
ing, extrapolating and lifting is small compared to the cost of integrating the
system (1)-(2) for N2 time steps, this procedure may well be faster than in-
tegrating (1)-(2) directly. We expect this to be the case when the full system
is characterized by a separation of time scales; the same principle underpins
several analytical reduction techniques (e.g. centre manifolds, inertial mani-
folds) but in our case the reduction is obtained on the fly, from the short full
simulation bursts.

We show results in Figs. 3 and 4 for δt = 0.005, N1 = 3. In this case the
projective step involves fitting a cubic polynomial to 4 data points (the last 3
of which were obtained through direct integration of the full system) and then
evaluating this polynomial at a time N2δt in the future. Explicitly, if the four
values of the jth component of Z obtained from integration of the full system
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are (Zj
−3, Z

j
−2, Z

j
−1, Z

j
0), we fit the cubic f j(t) = aj

3t
3 + aj

2t
2 + aj

1t + aj
0 through

the points (−3δt, Zj
−3), (−2δt, Zj

−2), (−δt, Zj
−1) and (0, Zj

0). The extrapolated
value of Zj is then f j(N2δt). The top panel of Fig. 3 shows the speedup
as a function of N2. The speedup is defined as the time taken to directly
integrate (1)-(2) over 0 < t < 100 with time-step δt divided by the time taken
to integrate over 0 < t < 100 using coarse projective integration, as described.
A speedup greater than 1 (N2 greater than approximately 10) means that
projective integration is more efficient than direct integration (provided that
the accuracy in the values of the reduced variables is satisfactory).

Of course, as N2 is increased the integration will start losing accuracy. The
bottom panel of Fig. 3 shows the results of an integration when N2 = 1
and the two curves shown (one for projective integration and one for direct
integration) are indistinguishable. The top panel of Fig. 4 shows the case
when N2 = 71. In this case, coarse projective integration involves taking 3
steps of length δt, giving the clusters of 4 points shown in the bottom panel
of Fig. 4, and then projecting the ai and bi forward a time 71δt, lifting these
values to initialise the xi and yi and continuing. The integration is clearly
less accurate than that shown in Fig. 3, but the general behaviour is still
qualitatively reproduced. In the spirit of Taylor series approximations, the
extrapolation can only be accurate up to some fixed interval into the future,
so as δt is increased, N2 must be decreased, and the speedup will decrease
(of course, the accuracy of the full integration will then also decrease). The
results shown here will change if N1 is changed or a different extrapolation
scheme is used. A full analysis of projective integration for the system discussed
here is beyond the scope of this paper (see discussions in [13,15,23,36,37]); it
is clear, however, that for problems with a large separation of time scales
and for appropriate parameter choices, it will be more efficient than straight
integration. Step adaptation techniques from traditional numerical analysis
based on a posteriori error estimates can be modified for the adaptive selection
of projective steps.

Note that the simulations shown in Figs. 3 and 4 started at t = 0, and thus
show transient behaviour, and different initial conditions were used for the two
simulations. It is also important to note that we chose different realisations
of the µi at each lifting step; the results are therefore representative of the
expected behaviour over different realizations of the random variable. Should
we only be interested in the acceleration of computations for a particular,
single realization, the results would be even more accurate.
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4 The 1:1 orbit

Consider the case of 1:1 locking, i.e. solutions for which each oscillator under-
goes one oscillation during each forcing period. The usual way to study this
would be to “strobe” the system once each forcing cycle. Defining Xp to be
the state of the system at t = 2πp/ω, where p is an integer, i.e.

Xp = X(2πp) ∈ R
2N (11)

where X is defined in (9), we could construct a map g : R
2N → R

2N as

Xp+1 = g(Xp) (12)

A 1:1 locked orbit is then a fixed point of g and its stability is determined by the
eigenvalues of the Jacobian of g, evaluated at the fixed point. However, finding
such a fixed point by, for example, Newton’s method, is computationally very
expensive due to the high dimensionality of the system. Also, the results we
obtain will only be correct for the particular realisation of the µi, a point to
which we return below. Instead we use the low-dimensional description of the
system in terms of the variable Z ∈ R

2(q+1). Defining Zp = Z(2πp), where Z
is defined in (10), we can construct a map h : R

2(q+1) → R
2(q+1) as

Zp+1 = h(Zp) (13)

(From now on we choose q = 1, so h : R
4 → R

4.)

Note that a fixed point of h is generally not a fixed point of g; however, we
will see that fixed points of h do describe the overall behaviour of the system,
and the stability follows from the eigenvalues of the Jacobian of h, evaluated
at its fixed points. In Fig. 5 we show the difference in x values (and in y
values) after a time of one period, for a fixed point of h, i.e. a 1:1 locked orbit
in the variables a0, . . . , b1. We can see that none of the oscillators returned
precisely to its initial condition. The two distributions xi(0) and xi(2π/ω)
give the same values of a0 and a1, even though they clearly do not completely
coincide. Similarly for yi(0) and yi(2π/ω). If the order of our approximation
(i.e. q) was increased, the discrepancy shown in Fig. 5 would decrease and the
fixed point of h would better approximate the fixed point of g.

To evaluate h(Z) in practice, we lift from Zp to Xp using (7)-(8), integrate (1)-
(2) for one period, then restrict from Xp+1 to Zp+1 using (5)-(6). Although
we could use projective integration as described in Sec. 3 to integrate (1)-(2),
for simplicity we did not use projective integration while obtaining any of the
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following results. We find the Jacobian of h using finite difference approxima-
tions to the derivatives, but we could also use matrix-free methods such as
Newton GMRES [22] to find fixed points of h.

5 Continuation

We can continue fixed points of h as parameters in (1)-(2) are varied using
standard pseudo-arclength continuation software [9]. In Fig. 6 we show the 1:1
locked orbit as ω is varied for a single oscillator (or equivalently, the network
with β = 0, since in this case all oscillators behave identically). The left and
right boundaries of the closed curves are saddle-node bifurcations where stable
and unstable 1:1 locked orbits annihilate one another [8].

We want to analyse the case when β 6= 0, i.e. when the network is hetero-
geneous. We could do this for a single realisation of the µi as above, but to
be more general we choose a number of different realisations of the µi and
average over them. We do this averaging within our definition of the map h.
Suppose r is the number of realisations we average over. For each j = 1, . . . , r
we calculate Y j

p+1 = h(Yp) using the jth realisation of the µi. (Note that Yp is

fixed.) We then define the averaged map ĥ as

ĥ(Yp) =
1

r

r
∑

j=1

Y j
p+1. (14)

The results of implementing this averaging and following the 1:1 orbit are
shown in Fig. 6 (dashed line). We can see that the effect of the heterogeneity
is to move the range of ω values for which there is locking to lower frequencies.
Even though the behaviour of the system was determined by following fixed
points of ĥ, the results agree extremely well with those found from direct
numerical integration of the full system (1)-(2) for any realisation of the µi

from the correct distribution.

5.1 Varying A

We can follow the saddle-node bifurcations of Fig. 6, which mark the edges
of the locking region, as both A and ω are varied. The results are shown in
Fig. 7, where the resonance “tongues” for a single oscillator (solid line) and a
network of 500 oscillators with β = 0.5 (dashed line) are shown. This figure
shows more clearly that the effect of the heterogeneity is to move the 1 : 1
locking region to lower frequencies. Fig. 6 is a horizontal slice along the top
boundary of Fig. 7.
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5.2 Varying β

5.2.1 Breakdown of the reduced description

It is clear that increasing β increases the heterogeneity of the network. To
understand the effects of this, in Fig. 8 we plot the boundaries of the 1:1
tongue as ω and β are both varied. We see the tongue boundaries move to
lower frequencies, as expected from previous results. (Note that Fig. 6 shows
slices through Fig. 8 at β = 0 and β = 0.5.) When the system is unforced, β
and ǫ act in opposition: if the heterogeneity (i.e. β) is increased, the coupling
strength (ǫ) must be increased in order to keep the network synchronised.
However, we consider ǫ to be fixed. Thus for β large enough the forced system
will no longer act as a “super-oscillator” in which all of the oscillators are
synchronised with each other. Once this occurs the concept of locking between
all oscillators and the forcing signal is no longer valid and the algorithm for
following “coarse” (or macroscopic) saddle-node bifurcations terminates due
to a lack of convergence within user-specified tolerances. We demonstrate this
phenomenon in detail in Fig. 9.

The top two panels of Fig. 9 show the behaviour for a typical realisation of
the µi just outside the 1:1 tongue, for a high value of β. The oscillators are
ordered by their µ values. The behaviour of the 10 oscillators with highest µi

is shown in panel A. In this case, oscillators 1-492 are synchronised with each
other, but oscillators 493-500 are not synchronised with the rest of the group.
However, oscillators 1-492 have also lost their locking to the forcing signal,
and this is demonstrated on panel B, where we plot x1 as a function of time.
This slow (apparently quasiperiodic) modulation is typical for an oscillator
just outside a resonance tongue. (Plotting xi for any 1 ≤ i ≤ 492 would give
a similar picture.)

Panels C and D show the behaviour just inside the tongue (note: a different
realisation of the µi from that in panels A and B has been used). Here, os-
cillators 1-496 are synchronised with each other, but oscillators 497-500 are
not synchronised with the first 496. However, now oscillators 1-496 appear to
be still, for all practical purposes, entrained by the forcing. This is shown in
panel D, where x1 is plotted as a function of time. The (apparently) periodic
oscillation shown here has the same frequency as the forcing, and a plot of
xi for any 1 ≤ i ≤ 496 would be very similar. We say “apparently” periodic
motion because once one oscillator has desynchronised from the main group,
none of the oscillators will undergo truly periodic motion. Instead, the motion
is expected to be quasiperiodic with at least two frequencies present, or maybe
even weakly chaotic.

For the results shown in Fig. 9 (with β = 1.2) approximately 1% of the oscil-
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lators (those with the highest values of µ) are not synchronised with the main
cluster, either inside or outside of the tongue. However, the remaining ∼ 99%
are synchronised with each other and using the “macroscopic” approach taken
here we can detect whether this large cluster is synchronised with the forcing
signal or not.

As β is increased, the fraction of oscillators no longer locked to the main cluster
increases and the description of the system from the macroscopic point of
view as a forced super-oscillator, using polynomial chaos coefficients, becomes
increasingly flawed. This is the reason for deciding to terminate the curves in
Fig. 8. Note that the two curves in Fig. 8 terminate at different values of β,
but for both curves, the saddle-node bifurcation following algorithm fails to
converge within tolerances when approximately 1% of the oscillators become
desynchronised from the main group.

Note that increasing the number of Hermite polynomials, q, used in the macro-
scopic description (thus increasing the accuracy of the low-dimensional de-
scription) will not allow these curves to be followed to greater values of β. It is
the lack of synchrony within the forced network that underlies the termination
of the curves. Of course, increasing ǫ would allow the curves in Fig. 8 to be
meaningfully continued to higher values of β.

Note that if we were to follow a vertical path through the middle of the
tongue shown in Fig. 8 for a particular realisation of the µi, there would be
many “fine-scale” bifurcations as one or more oscillators desynchronised from
the main group. However, these are not visible in our macroscopic description
of the system; we would need to change our macroscopic description in order
to detect them [31].

Moon et al. [30,32] also considered the loss of synchrony in a heterogeneous
network of Kuramoto oscillators. They were studying projective integration
and showed that if one or two oscillators broke from the main cluster, projec-
tive integration could continue, as long as the low-dimensional description was
augmented by the phase angle(s) of the oscillators that had lost synchrony.
We take a different approach here, regarding the unsynchronised oscillators as
providing a perturbation to the dynamics of the synchronised group.

5.2.2 Phase walkthrough

For a single periodically driven oscillator, “phase walkthrough” can occur just
outside a 1:1 resonance tongue [14]. In this phenomenon the driven oscilla-
tor appears to be nearly synchronised with the driving oscillator, but every
so often it undergoes either one extra or one fewer oscillation than the drive
before returning to near synchrony. A similar phenomenon can occur in a pair
of coupled oscillators. [5]. This is because the system lies in the vicinity of a
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saddle-node bifurcation of periodic orbits. This walkthrough occurs approxi-
mately periodically, and the period scales as |ω−ω∗|−1/2, where ω∗ is the value
of ω at the relevant tongue boundary [11]. As can be seen, this slow oscillation
can be made arbitrarily slow by adjusting ω.

A similar phenomenon occurs in our system, but with a slight difference.
For small β all of the oscillators are synchronised with one another, effectively
acting as one oscillator, and we can observe phase walkthrough near the tongue
boundaries with the scaling just mentioned above. However, this phenomenon
is a result of the system spending a long time in phase space near the remains
of the stable and unstable fixed points of ĥ, and is thus sensitive to noise or
other perturbations.

Once at least one “runaway” oscillator has become desynchronised from the
rest (as a result of increasing β) the system can be thought of as a noisily
perturbed oscillator, the “oscillator” being the vast majority of oscillators that
are synchronised with each other, and the “noise” resulting from the influence
of the desynchronised oscillator(s) on the rest. Thus we expect that we can no
longer make the slow oscillation arbitrarily slow just by adjusting ω. Indeed, for
large fixed β, near the boundaries shown in Fig. 8 there is a range of ω values
for which the slow oscillation (walkthrough) period is not well-defined, since
perturbations from the desynchronised oscillator(s) affect the neutrally stable
behaviour at the underlying bifurcation, resulting in apparently stochastic
“slipping” relative to the forcing signal. It may be possible to describe these
rare occurrences in terms of Langevin dynamics on a low-dimensional free
energy surface [20,27].

5.3 Varying φ

Another parameter of interest to vary is φ. Recall that varying φ in a single
unforced oscillator causes a Hopf bifurcation, leading to oscillations. The result
of varying φ is shown in Fig. 10, for both a single oscillator and for a network
with β = 0.3. We see that the tongue terminates at a positive value of φ, and
that heterogeneity moves the tongue boundary to lower values of φ.

To understand the cusps for low values of φ we plot in Fig. 11 a cross-section
through Fig. 10 at φ = 0.8, for a single oscillator. The four saddle-node bifurca-
tions are clear. (For the network, a similar plot is found, not shown.) The cusps
involve both saddle-node bifurcations being annihilated at a codimension-two
point. In the vicinity of these cusps, previous results on the periodically forced
van der Pol oscillator [19] show that there should be a curve of Hopf bifur-
cations of the fixed point of the map starting near each cusp, which will be
associated with the generation of quasiperiodic motion. We can follow these
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curves using standard algorithms [10], and the results for the left cusp are
shown in Fig. 12, both for a single oscillator and for the inhomogeneous net-
work of 500 oscillators. (We also followed the Hopf bifurcation curve associated
with the right cusp, not shown.) The Hopf bifurcations correspond to a com-
plex conjugate pair of eigenvalues crossing out of the unit circle in the complex
plane as ω is decreased. Writing these eigenvalues at bifurcation as e±iθ, we
have θ = 0 at the rightmost point of the Hopf bifurcation curve (i.e. eigen-
values of +1, +1) and θ monotonically increases as ω is decreased until θ = π
(i.e. eigenvalues of −1,−1) at the leftmost point on the Hopf bifurcation curve.

Note that while following the curve of Hopf bifurcations for the network, we
could not use a larger value of β than β ≈ 0.3 (i.e. we could not use a more
heterogeneous network) because for larger values of β the oscillators with
the largest values of µ would become desynchronised from the rest as the
bifurcation was approached. The problem discussed in Sec. 5.2 regarding the
effectiveness of the macroscopic approach would then reoccur.

The Hopf bifurcation for a single forced oscillator is supercritical, with a stable
2–torus being created as the Hopf bifurcation curve is crossed in the direction
of decreasing ω [19]. The criticality of the Hopf bifurcation for the network
seems to be the same as that for a single oscillator, and even though the curve
in Fig. 12 was found by averaging over 20 realisations of the µi, it is still a
very good predictor of the parameter values at which quasiperiodic dynamics
occur for any particular realisation of the µi (not shown).

Previous results [19] lead us to expect (for each cusp) a curve on which there
are orbits homoclinic to the fixed point of the map (i.e. homoclinic to a periodic
orbit in the full system), emanating from the point where the curve of Hopf
bifurcations and saddle-node bifurcations meet, for both a single oscillator and
the network. We do not consider these curves further.

6 Discussion

In this paper we studied a finite network of heterogeneous, globally-coupled
oscillators, all subject to the same periodic forcing. We coarse-grained the
dynamics, obtaining a low-dimensional description of the system in terms of
a few polynomial chaos coefficients. We defined a return map by sampling the
low-dimensional system once every forcing period; by finding and following
fixed points of this map we performed standard bifurcation analysis on the 1:1
locked state at a much reduced computational cost compared with analysis
of the full system. By averaging over realisations of the distribution of the
heterogeneity we have been able to obtain results valid for any particular
realisation, rather than just a single one.
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The main result of this paper is the demonstration that the dynamics of large,
heterogeneous networks of forced coupled oscillators can be simulated and
analysed using a low-dimensional description of the state of the network, pro-
vided that all or most of the oscillators are synchronised with one another.
The reduction to a low-dimensional description is performed “on the fly” and
results in considerable computational simplification. For this specific network
and heterogeneity we found that the effects of heterogeneity are to move the
1:1 locked orbit to lower frequencies, and to lower values of φ.

We have concentrated on only the 1:1 resonance; the techniques used can be
easily applied to any other resonances. One issue we have not discussed is
varying N , the number of oscillators in the network. We found that for small
values of N the number of realisations, r, of the µi that are averaged over in
the definition of ĥ (eqn. (14)) had to be increased in order for continuation
algorithms to converge to a given tolerance. This makes sense since, as N is
increased, the difference between a simulation with one particular realisation
of the µi and that for a simulation with a different realisation, will decrease,
and thus fewer realisations will need to be averaged over.

Compared to the Kuramoto model results of Moon et al. [30,32], or their
animal flocking models [31] where each oscillator consists of a single variable
(a phase angle) the coupled units here are representative of general ODE-
based oscillators, capable of undergoing Hopf bifurcations. It is this extra
feature that gives rise to results such as those in Figs. 10 and 12.

It would be interesting to apply these ideas to networks of oscillators where the
onset of oscillation is through different types of bifurcations, e.g. homoclinic
bifurcation, saddle-node-on-a-circle (or SNIPER), or a saddle-node bifurcation
of periodic orbits, or to other finite heterogeneous networks that have previ-
ously been studied [6,35]. Another possibility is to study the periodic forcing
of networks of coupled bursting neurons. The response of isolated bursting
neuron models to periodic forcing has recently been studied [7,26], as has the
behaviour of coupled bursters [21].

Regarding the problems caused by one or more oscillators desynchronising
from the main group (see Sec. 5.2), one way to deal with this might be to
expand the states of oscillators in functions other than “globally” defined
polynomials of µ. For example, a wavelet basis of localised functions may be
more suitable [28], particularly if the network breaks into clusters, with the
oscillators within each cluster being synchronised.
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generation in the pre-Bötzinger complex. II. Populations of coupled pacemaker
neurons. J. Neurophysiol. 82 pp. 398-415, 1999.

[7] Coombes, S., Owen, M. R. and Smith, G. D. Mode-locking in a periodically
forced integrate-and-fire-or-burst neuron model. Phys. Rev. E, 64, 041914, 2001.

[8] Devaney, R. L. An introduction to chaotic dynamics systems, second edition.
Addison-Wesley, 1989.

[9] Doedel, E. J. AUTO: Software for Continuation and Bifurcation Problems in
Ordinary Differential Equations, 1997. http://indy.cs.concordia.ca/auto/

[10] Doedel, E., Keller, H. B. and Kernevez, J. P. Numerical analysis and control of
bifurcation problems (I) Bifurcation in finite dimensions. Int. J. Bifn. Chaos, 1
(3) pp. 493-520, 1991.

[11] Doiron, B., Laing, C., Longtin A. and Maler, L. Ghostbursting: a novel neuronal
burst mechanism. J. Computational Neuroscience, 12(1), pp. 5-25, 2002.

[12] Doiron, B., Rinzel, J. and Reyes, A. Stochastic synchronization in finite size
spiking networks. Phys. Rev. E. 74, 030903, 2006.

[13] E, W. and Engquist, B. The heterogeneous multiscale methods. Comm. Math.
Sci. 1, pp. 87-132, 2003.

[14] Ermentrout, G. B. and Rinzel, J. Beyond a pacemaker’s entrainment limit:
phase walk-through. Am. J. Physiol. Regulatory Integrative Comp. Physiol.
246, pp. 102-106, 1984.

[15] Gear, C.W. and Kevrekidis, I.G. Projective methods for stiff differential
equations: problems with gaps in their eigenvalue spectrum. SIAM J. Sci.
Comput. 24, pp. 1091-1106, 2003.

14



[16] Glass, L. Synchronization and rhythmic processes in physiology. Nature. 410,
pp. 277-284, 2001.

[17] Golomb, D., Hansel, D., Shraiman, B. and Sompolinsky, H. Clustering in
globally coupled phase oscillators. Phys. Rev. A. 45, pp. 3516-3530, 1992.

[18] Golubitsky, M., Stewart, I., Buono, P. L. and Collins, J. J. Symmetry in
locomotor central pattern generators and animal gaits. Nature. 401, pp. 693-
695, 1999.

[19] Guckenheimer, J. and Holmes, P. Nonlinear Oscillations, Dynamical Systems,
and Bifurcations of Vector Fields. Springer-Verlag, New York. 1990.

[20] Haataja M., Srolovitz D. J. and Kevrekidis I. G. Apparent Hysteresis in a Driven
System with Self-Organized Drag. Phys. Rev. Lett. 92, 160603, 2004.

[21] Izhikevich, E. M. Synchronization of elliptic bursters. SIAM J. Appl. Math. 60,
pp. 503-535, 2000.

[22] Kelly, C. T. Iterative methods for linear and nonlinear equations. SIAM, 1995.

[23] Kevrekidis, I. G., Gear, C. W., Hyman, J. M., Kevrekidis, P. G., Runborg, O.
and Theodoropoulos, C. Equation-free, coarse-grained multiscale computation:
enabling microscopic simulators to perform system-level analysis. Comm. Math.
Sci. 1, pp. 715-762, 2003.

[24] Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence, Springer, Berlin,
1984.

[25] Laing, C. R. Rotating waves in rings of coupled oscillators. Dynamics and
stability of systems. 13, pp. 305-318, 1998.

[26] Laing, C. R. and Coombes, S. Mode-locking in a periodically forced
“ghostbursting” neuron model. Int. J. Bif. Chaos, 15, pp. 1433-1444, 2005.

[27] Laing, C. R., Frewen, T. and Kevrekidis, I. G. Coarse-grained dynamics of an
activity bump in a neural field model. Submitted, 2006.
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Fig. 1. Angular frequency of an isolated oscillator (β = 0 = ǫ) as a function of φ.
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Fig. 2. Left column: xi as a function of µi (dots). Right column: yi as a
function of µi (dots). Also included are the polynomial chaos expansions with
q = 1 (lines). From top to bottom: t = 0, 2π/ω, 4π/ω. Parameters are
A = 0.5, ω = 0.85, β = 0.1, ǫ = 1, N = 500.
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Bottom: a1 for projective integration with N2 = 1 (dots) and a1 from full in-
tegration (solid line — indistinguishable from the dots). Other parameters are
A = 0.5, ω = 0.85, φ = 1, β = 0.5, ǫ = 1, q = 2. See text for details.
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too heterogeneous to synchronise among themselves. N = 500 and A = 0.5. Other
parameters are ǫ = 1, φ = 1.
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Fig. 10. Boundaries of the 1:1 orbit. Solid line: one oscillator. Dashed line: a network
with N = 500 and A = 0.5, β = 0.3, r = 20, ǫ = 1.
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a horizontal slice at φ = 0.8 through Fig. 10.
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