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Summary 

Critical source areas (CSAs) are areas of enriched contaminant sources and hydrological 

activity that occur in small parts of a catchment or farm, but contribute a disproportionately 

large amount of contaminants to the environment. Defining areas that represent enriched 

sources of contaminants is central to isolating and then managing contaminant losses from a 

CSA. These areas could be camp sites that receive large amounts of nitrogen (N) from urine 

and N, phosphorous (P) and microbes from faeces. This paper draws on a spatial datasets 

from a hill country, cattle grazed pasture, in which cows wore a GPS collar to track their 

movement over six days. Cows were also fitted with a urine sensor so that urine patches 

could be located in the paddock, and a motion sensor to differentiate between walking, 

grazing, standing and lying activities. GIS map layers were used to show distribution patterns 

of cow movement activities, urine deposition, and paddock slope, aspect and elevation. With 

time spent in a given area of a paddock (greatest when lying down) being correlated with 

urine distribution (r = 0.64), lying time was used as a proxy for urine distribution. Of several 

modelling approaches evaluated, the Generalised Additive Model (GAM) best predicted 

where cows would lie, using independent variables slope, elevation, aspect, Northings and 

Eastings in 25 m
2
 grid cells overlying the paddock map. Aggregates of “cells” with high 

densities of urine patches are considered to be potential CSAs of N. This model will be 

revised as new data become available and by inclusion of farm features such as trees, shelter 

belts, water troughs and gateways around which animals typically congregate.  

 

Introduction 

With increasing pressure coming on to farmers to minimise environmental pollution from 

their farming operations, mitigation strategies are required. Nitrogen (N), phosphorous (P) 

and faecal microbes are pollutants of major concern, where N can be leached as nitrate or 

emitted as ammonia or nitrous oxide, whereas organic N, inorganic P and faecal microbes 

move in water, predominantly in overland flow (McDowell et al. 2005; McDowell & 

Wilcock 2007; McDowell & Srinivasan 2009; McDowell 2012). A critical source area (CSA) 

is an area of land with a large source of nutrient or faecal contaminants that intersects with a 

transport mechanism – usually hydrological activity like surface runoff (McDowell & 

Srinivasan 2009). Where only urine is involved, each urine patch, but typically an 

aggregation of urine patches such as in a gateway or stock camp, is nutrient rich and can be a 

CSA of N (CSAN) with losses emitted as ammonia, nitrous oxide or as nitrate in leachate to 

groundwater. Toolboxes of potential mitigation strategies exist (Monaghan et al. 2007; 

Monaghan et al. 2008; Monaghan 2009), but unless these small CSA areas are targeted with 

the mitigation, the cost of mitigation may to be too high for whole-paddock treatment 

(McDowell & Srinivasan 2009; Betteridge et al. 2011). Targeting requires knowledge of 
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where CSAs are located within a paddock. Two examples of identified CSAN in hill country 

have been reported; first, cattle campsites on flat terrain within the hills and sheep campsites 

at the top of the hill (Betteridge et al. 2010b); second, flat areas on the farm where crops or 

autumn saved pasture are break-fed such that very high amounts of excreta are returned to 

small areas of the farm (Betteridge et al. 2011). To enable farmers to treat CSAs with a 

chosen mitigation strategy they will need to know where these are located. Also, a regulatory 

body may need independent verification that such areas have been correctly identified and 

treated. An example of this approach has been reported for sheep grazing a hill country farm 

in the Lake Taupo region, for which spatio-temporal distribution data for urine, GPS, pasture 

mass and quality parameters within 25 m
2
 grid cells were used to develop a model of the 

important animal behaviour drivers for where urine would be excreted (Betteridge et al. 

2008). For determining CSAN, a critical assumption is that there is a strong correlation 

between the time a cow spends lying in an area of the paddock and the proportion of the total 

daily urination events deposited there. Previous studies and data from this study show the 

correlation to be between r = 0.57 for time spent in a 100 m
2
 grid cell (Betteridge et al. 

2010b) and 0.64 for time spent in a 25 m
2
 grid cell and the number of urination events 

occurring in those respective cells. This assumption is important because farmers will not be 

able to use urine sensors and GPS units on animals to define where they urinate. In this 

project we have developed a process to predict where cattle will lie in a random paddock for 

which only slope, aspect, elevation, Northing and Easting values are known for each grid cell 

of the 5 m * 5 m overlying the paddock. We have not linked faecal distributions to this model 

although the distribution patterns of urine and faeces are likely to be similar (White et al. 

2001).  

 

Trial data 

A steep, ~0.5 ha paddock with average slope of the grid cells being 17.8˚ (range 2.5˚ to 

40.9˚), at the AgResearch Ballantrae Research Station (near Woodville), was stocked with 20 

rising 2 yr beef heifers (ave. LWt 264 (SD 70.5) kg) for 5 days. The paddock had a 

predominantly E to SE aspect and there were no trees to modify cattle behaviour. Pasture 

quality was not specifically measured but was typical hill country pasture dominated by 

browntop (Agrostis capillaris) that was moderately well utilised in the previous grazing 

event. Some rank browntop was present on steeper slopes. Each cow was fitted with a GPS 

collar and urine sensor (Betteridge et al. 2010b) and an IceTag
®
 on the left hind leg for 

determining Lying, Standing, Walking and Grazing times (Betteridge et al. 2010a). The GPS 

logged the position every 10 minutes if no movement had been detected or when the animal 

moved ≥3 m relative to the last logged position. Within a Microsoft
®
 Excel spreadsheet all 

GPS data were converted to 1 second intervals by interpolation between irregularly timed 

GPS readings. To this were synchronised the IceTag readings at one minute intervals 

detailing the type of activity and percentage of time within that minute spent doing those 

activities (Aharoni et al. 2009). The urine sensor used a thermistor suspended under the tail of 

the cow. The urine sensor recorded time and ambient temperature at 1 second intervals except 

when urine was excreted when the temperature rose close to body temperature (39˚C). 

Urination data were synchronised with the other data by time. All data were then translated to 

values per minute.  

 

Modelling methodology 

Using the R computing software package (R 2011), a 5 m * 5 m grid cell overlay was 

developed within which all motion activity and urination event data of all cows were 

summed. Analyses were based on these cell totals rather than on data for individual cattle. 

The cells around the paddock boundary were clipped and data apportioned pro-rata 
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according to that proportion of the cell area remaining within the paddock after clipping. 

Activities are plotted frequency densities for visualising where these activities, especially 

lying and urination, took place. Dung excreted by all cattle during the grazing period was 

mapped with a hand-held GPS at the completion of grazing. This contrasts with urine 

distribution which related to urination events recorded only while the urine sensors were 

working successfully. 

 

Multiple linear regression analysis (MLR) 

The main aim was to identify the best predictive regression model for determining „Lying 

time‟ based on other measured variables. In the first instance, the MLR was used to quantify 

effects of measured variables urine, dung, Aspect, Slope and Elevation on lying time (Lying, 

mins).  

 

Here contour parameters related to each 25 m
2
 grid cell and dung and urine were counts 

within each grid cell. Standardised data are required in all spatial predictive modelling. The 

Akaike Information Criterion (AIC) was used to determine those variables that would not be 

used as they contributed least towards the outcome of the final selected model (Akaike 1973). 

The grid data were also used to generate a correlation matrix amongst all variables. 

 

Other Models assessed 

An underlying assumption of the MLR method is that the relationship under study is spatially 

constant and that the estimated parameters remain constant over space. In heterogeneous 

environments, such as grazed pastures, especially hill country pastures, variation of parameter 

values will often change in unison, i.e. they are auto-correlated. Thus, the basic premise of 

the parameters being „stationary‟ is violated and the MLR approach is invalid (Wang et al. 

2005). Moreover, failure to account for auto-correlation prevents in-depth interpretation of 

almost all geographical analyses (Jetz et al. 2005) and can lead to incorrect conclusions.  

 

Furthermore, if the main aim is to „predict‟ the lying time in a grid of a new paddock, then we 

need a regression model for the response variable „Lying‟, based on measured variables 

Aspect, Slope, Elevation, Easting and Northing. Note that for a random paddock on a random 

farm, only slope, aspect, elevation, Northing and Easting data are readily available for each 5 

m * 5 m grid cell overlying the paddock. 

 

Geographically Weighted Regression (GWR, Fotheringham et.al., 2002), k-Nearest 

Neighbour Regression (kNNR), Random Forest Regression (RFR) and the Generalised 

Additive Model (GAM) (see Hastie et.al., 2009) are methods that allow for variation in 

parameters in time and space, thereby overcoming the limitation of MLR analyses of spatially 

oriented data. Each modelling approach predicts the response value of a given cell by 

referencing values of surrounding cells in a certain way. kNNR uses the k number of 

surrounding cells, whereas GAM determines the smoothed response surface based on all 

surrounding cells. GWR explores spatial non-stationarity of a regression relationship for 

spatial data by locally fitting a spatially varying coefficient regression model. RFR, on the 

other hand, builds a large number of regression trees based on bootstrap samples together 

with a random subset of predictor variables. Tree models are grown without pruning and the 

final prediction is an ensemble of predictions from all trees.  

 

These methods don‟t produce a model (that can be easily written up) but rather take an input 

training data set and predict CSAs for the new paddock data. Input data must include the 

Northing and Easting values of each grid cell and all input data must be standardised so that 
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the model built on the training data can be used to predict outcomes from the new data where 

the site will have local slopes, aspects, elevations and location co-ordinates (northing and 

easting). 

 

R software was utilised to assess several potential models for predicting the location of lying 

- our proxy for urine hotspots (CSAN). Models were assessed using Mean-Squared-Error 

(MSE) and R-squared values in the usual manner (i.e. „re-substitution‟ approach) as well as 

via a leave-one-out cross-validation (CV) approach. Furthermore, graphics including grid-

plots showing actual and fitted values were used for assessing the goodness-of-fit of the 

candidate models.  

 

Results and discussion 

The paddock‟s mean slope was 17.8˚ and rose 28 m from the lowest to the highest point (Fig. 

1). Although 20 cows were fitted with urine sensors only data from the 8 sensors that 

provided good data for the 5 days of grazing were used in these analyses. Lying was the most 

common activity (45% of total time spent doing all activities in a grid cell) and was 

concentrated on the flatter areas of the paddock, whereas grazing (33%) was much more 

widely represented across the paddock. Standing time was half that of grazing and walking 

was only 3% of total timed activities (Fig. 2).The 20 cows produced 247 urination events 

(Figs. 1, 3), averaging (SD) 9.0 (2.95) events/cow/day. Urine was distributed predominantly 

on the easy slope areas where cows were shown to have rested. As with GPS units, several 

urine sensors failed to work for the full trial period. The 1457 dung deposits are also shown in 

Fig. 3.  

 

 

 
 

Figure 1. Contour map showing range in elevation (m asl) with 1 m contour lines. Pink spots 

represent location of urination sites determined by urine sensor and GPS, with most being on 

the flatter (most widely space contour lines) areas of this paddock. 
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Figure 2. Sum of time spent by all cows within grid cells (left side)[lemon 1000-1600, 

orange 1600- 2000, red >2000 mins.]. Plots on the right indicate the areas where greatest 

activities took place in each paddock with lemon increasing through to red indicates 

increasingly larger values of time spent performing activities. The circle is a reference marker 

for the reader that circles the same plot in each diagram. 

 

 

 

 
 

Figure 3. Frequency distribution pattern of urine determined from working urine sensors and 

all dung deposits of all cows measured manually with a GPS at the conclusion of the trial. 

Colour codes are as for Fig. 2. 
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MLR analyses  

Multiple linear regression analysis of trial data showed lying time was moderately related to 

urine events, less strongly related to faecal output and negatively impacted by slope. Whereas 

dung was included in this model it was not used in subsequent models since dung is a 

variable that we have rarely mapped.  

 

Lying = 0.53Urine + 0.28Dung – 0.18Slope – 0.001 (R
2
 = 0.529, P < 0.01) 

 

Table 1. Correlation coefficients amongst measured variables, with those of greater 

importance being highlighted in bold. 

 

 

Grazing Walking Standing Lying Urine Dung Aspect Slope Elevation 

Grazing 1 0.67 0.60 0.41 0.39 0.35 -0.17 0.15 0.04 

Walking 0.67 1 0.48 0.35 0.27 0.34 -0.11 -0.07 0.12 

Standing 0.60 0.48 1 0.60 0.44 0.36 -0.02 -0.21 -0.07 

Lying 0.41 0.35 0.60 1 0.64 0.49 0.11 -0.34 -0.07 

urine 0.39 0.27 0.44 0.64 1 0.31 0.09 -0.16 -0.09 

dung 0.35 0.34 0.36 0.49 0.31 1 0.01 -0.25 0.16 

Aspect -0.17 -0.11 -0.02 0.11 0.09 0.01 1 -0.31 -0.48 

Slope 0.15 -0.07 -0.21 -0.34 -0.16 -0.25 -0.31 1 0.09 

Elevation 0.04 0.12 -0.07 -0.07 -0.09 0.16 -0.48 0.09 1 

 

Correlation coefficients amongst the variables (Table 1) show urine deposition is most 

strongly correlated with lying time. The correlations amongst activity states (lying, standing, 

walking, grazing) occurs because within any one 25 m
2
 grid cell several animals will have 

visited multiple times, often performing different activities. Because lying and standing are 

both states of resting, these were combined to reveal a stronger correlation with urination 

than between urination and lying or standing, alone. Notable, but weak correlations are also 

seen between urination events with standing and grazing, confirming our observation that 

urine is also deposited in regions of the paddock other than where they lie down. The 

negative correlation between lying and slope shows that cows mainly rested on the flatter 

areas (0 to 12˚ - data not presented) of this steep paddock. 

 

A comparison of MLR, GWR, GAM, kNNR and RFR models  

Based on the Training mean square error (MSE = sum(y-f)
2
/n, y – actual, f – fitted, n – 

sample size) values (in Table 2), lowest was with the RFR model followed by GAM, kNNR 

and GWR, the highest being MLR. However, the CV MSE values indicate that kNNR 

followed by GAM are the best models. The R
2
 values (= 1 – {sum(y-f)

2
/sum(y- ̅)

2
},  ̅ – 

mean(y)) indicate that RFR explains about 90% and 50% of the variation in lying times under 

„re-substitution‟ and CV model assessment scenarios respectively, followed closely by the 

GAM and kNNR models with values 83% & 52% and 82% & 57% respectively. 
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Considering the fact that the CV based assessment of the models is more reliable than those 

based on the „re-substitution‟ approach, we recommend kNNR and GAM models for 

predicting lying times (in a 5m x 5m grid) using the associated grid values of Aspect, Slope, 

Elevation, Eastings and Northings. 

 

 

Table 2. Mean-Squared-Error (MSE) and R-squared estimated values via „re-substitution‟ 

(Training) and „cross validation‟ (CV).  “*” indicates that prediction facility for GWR model 

is unavailable in R software. 

 

Model 

 

Training  

Fitted MSE 

Training  

Fitted R-square 

CV  

Fitted MSE 

CV  

Fitted R-square 

MLR 132671 0.1639 137939 0.1307 

GWR 35390 0.7770 * * 

RFR 16311 0.8972 79031 0.5019 

kNNR 27853 0.8245 68774 0.5666 

GAM 27523 0.8265 76461 0.5181 

 

 

The observed vs fitted graphs in Figures 4 and 5 clearly show that GAM followed by kNNR 

(and GWR with respect to „training‟) are the best models for predicting lying times compared 

to actual lying times ((a) in Figs 4, 5).  

 

This conclusion is based purely on data collected from a single paddock. Ideally, the fitted 

model needs to be tested on independent paddock(s) with known values of predictor as well 

as response variables.  

 

The model(s) will be further developed using new paddocks for which we have Contour, 

Easting, Northing and animal activity data. These paddocks will need to vary in size, Aspect, 

Elevation and Slope ensuring that there are different ratios of hill and flat areas amongst the 

paddocks. This will ensure a more robust model of where cattle nutrient hotspots will likely 

be found in a randomly selected paddock for which the farm manager wishes to apply a N 

loss mitigation strategy.  

 

A truly robust model will also needs to recognise physical features (trees, hedges, water 

troughs and gateways) within a paddock that are likely to entice animals to excrete 

disproportionate amounts of urine within close proximity. Such features will need to be added 

manually into a GIS map layer using local knowledge or an aerial photograph. Furthermore, 

these nutrient hotspots of organic N, inorganic P and faecal microbes will need to be linked to 

a hydrology model to determine transport. 
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Figure 4. Grid plots for frequency of lying time showing actual (a) and fitted values based on 

five models (b-f) for the „training‟ case. 

 

 

 

 
 

Figure 5. Grid plots for „Lying time‟ showing actual (a) and predicted values (b-f) for cross-

validation case. R is unable to predict Lying activity using (c)GWR. 
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Conclusions  
Cattle fitted with a GPS and motion sensor to determine where they lie down, as a proxy for 

where they excrete a large proportion of their daily urine, can be used to develop models for 

predicting campsite locations. Such sites, once located, could be targeted by farmers to 

mitigate these disproportionately high N losses, relative the losses from the remaining areas 

of the paddock. We recommend acquiring Slope, Elevation, Aspect, Easting and Northing 

data for a paddock, based on a 5 m x 5 m grid. The Generalised Additive Model may be the 

best for this purpose, but this can be confirmed only once many more datasets are assembled 

to develop a robust model. 
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