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Abstract 

There are a number of sensing technologies which are being researched to assess pasture 

quality. Recent efforts have concentrated on non-destructive methodologies that give farmers 

access to near real-time information to assist in informing pasture management decision 

making. Previously, only time consuming and destructive sampling has been employed with 

assessment of quality being completed through wet chemistry or laboratory based VIS/NIR 

techniques. This paper summarises the work where a variety of optical sensors were used to 

sense pasture quality parameters such as: crude protein (CP), acid detergent fibre (ADF), 

neutral detergent fibre (NDF), ash, dietary cation-anion difference (DCAD), lignin, lipid, 

metabolisable energy (ME) and organic matter digestibility (OMD) was evaluated. In situ 

canopy spectral reflectance was obtained from mixed pastures, under commercial farm 

conditions in New Zealand. 

 

The approach was to use a hyper-spectral (ASD Field Spec
® 

Pro) sensor and a 16-channel 

multi-spectral sensor (MSR 16R, Cropscan, Inc.) for predicting the pasture quality 

parameters. A three channel sensor (Crop Circle™; Model- ACS470, Holland Scientific) was 

also used to assess dry matter (DM) and crude protein availability (CPA).  

 

The statistical methods were employed to establish a relationship between reflectance 

measurements and wet chemistry. In all cases these sensors showed that a number of the 

pasture quality parameters could be assessed with reasonable levels of explanation. For the 

multispectral sensor acceptable levels of explanation could be obtained and could be 

improved through season-specific models.  

 

Introduction 

In New Zealand dairy farming, grazed pastures are the main source of animal feed. 

Therefore, accurate assessment of pasture quantity and quality are essential for efficient and 

productive dairy farm management. Measurement of pasture quantity is  more frequently 

used in pasture management, however, in recent years, concern about the pasture quality has 

been growing. Many scientists have proved that providing high quality pasture to animals 

substantially improves the animal performance and milk production (Holmes et al., 2007). 

Stocking rates can also be manipulated if the availability of the quality is predetermined. 

Furthermore, early detection of pasture quality helps the farm manager to improve the quality 

of pasture by decision making such as proactive fertiliser application and adjusting grazing 

intervals. In addition, good quality pasture also can reduce the enteric methane emissions 

(FAO, 2010). Generally, pasture quality represented by a combination of parameters such as 

crude protein, acid detergent fibre, neutral detergent fibre, ash lignin, lipid, metabolisable 

energy and organic matter digestibility (Holmes et al., 2007).  
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Traditionally, in order to measure the pasture quality parameters, laboratory based wet 

chemistry has been used, this is costly, laborious and time consuming, and required 

hazardous chemicals. Conversely, near infrared spectroscopy (NIRS) has become available 

for determining pasture quality parameters in a rapid and low cost way. Since the NIRS 

proved as a potential tool for estimating forage quality (Marten et al., 1985), it has been used 

widely in various commercial laboratories. Although NIRS is widely used, it involves 

destructive sampling, drying and grinding. Alternatively, remote sensing tools have been 

developed for in-field sensing of pasture parameters. In remote sensing, based on the position 

of the sensors, three types of sensors are available: space borne, air borne and proximal. 

Proximal sensors are promising in commercial agriculture because of instant results from the 

sensors and flexible to operate. These results provide the opportunity to make decisions 

immediately. Numerous researchers have conducted experiments to establish relationships 

between reflectance and pasture quality parameters (Pullanagari et al., 2011; Sanches, 2009). 

The aim of this publication is to provide the research updates of proximal sensing tools for 

estimating pasture quality. 

 

Relevance of spectral reflectance for estimating pasture quality 

Fundamentally, there is an explicit relationship between vegetation reflectance and 

biochemistry of corresponding vegetation (Curran, 1989). This led to development of many 

techniques to predict the biochemistry of vegetation using reflectance. Consequently, NASA 

launched a programme called “Accelerated Canopy Chemistry Programme” to examine the 

scope of imaging spectroscopy to predict forest foliar chemistry (NASA, 1994). They found 

interesting results that the reflectance values strongly correlated with foliar chemical 

parameters (Martin & Aber, 1997). After that, many scientists have attempted to examine the 

potential of sensing devices. In a review by Curran (1989) 42 absorption features in visible 

near infrared region of the electromagnetic spectrum have been listed that are related to 

various foliar chemicals. Peterson et al. (1988) showed that the absorption features in the 

region of 1500-1700 nm were attributable to lignin and starch. The visible and near infrared 

regions also have great potential for estimating chlorophyll which is essential parameter for 

plant growth and development. The absorption peaks around 695-990 nm and 1950-2400 nm 

were related to crude protein (Pullanagari et al., 2011). The red-edge region (670-780 nm) 

also has shown great potential for estimating chlorophyll and carotenoid pigments, and 

nitrogen concentration (Cho & Skidmore, 2006).  

 

Sensor types 

Based on the spectral resolution, the optical sensors classified into multispectral and 

hyperpsectral sensors. Multispectral sensors acquire spectral reflectance in a small number of 

broad wavelengths of the electromagnetic spectrum. For example, Cropscan™ sensor has 16 

wavelengths, six in visible, three in near infrared and two in shortwave infrared region of the 

electromagnetic spectrum. Crop Circle has three wavebands (two in visible region and one in 

near infrared region of the electromagnetic spectrum). These sensors are widely available in 

the market and commercially have been used in cropping systems. Conversely, hyperspectral 

sensors being operated with contiguous narrow wavebands from visible (350 nm) to 

shortwave infrared region (2500 nm) of the electromagnetic spectrum. Generally, 

hyperspectral data require expensive computation as compared to multispectral data, and has 

more potential to describe vegetation features with high accuracy.  
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 Table 1 The results of different experiments for estimating pasture quality parameters 

Parameter 
Coefficient of 

determination (r2) 
Type of sensor Statistical method Reference 

Crude Protein 0.78 Hyperspectral PLSR (Pullanagari et al., 2011) 

 0.85-0.93 Hyperspectral PLSR (Biewer et al., 2009) 

 0.62 Hyperspectral SMLR (Kawamura et al., 2008) 

 0.67 Hyperspectral Vegetation indice (Starks et al., 2006b) 

 0.72 Multipsectral SMLR (Pullanagari et al., 2012) 

 0.73 Hyperspectral SMLR (Starks et al., 2006a) 

 0.68 Hyperspectral ANN (Starks & Brown, 2010) 

 0.74 Multispectral Vegetation indice (Pullanagari et al., 2012) 

 0.74 Hyperspectral SMLR (Zhao et al., 2007) 

Acid detergent fibre 0.82 Hyperspectral PLSR (Pullanagari et al., 2011) 

 0.23 Hyperspectral Vegetation indice (Starks et al., 2006b) 

 0.48 Hyperspectral SMLR (Starks et al., 2006a) 

 0.31 Hyperspectral ANN (Starks & Brown, 2010) 

 0.52 Multispectral SMLR (Pullanagari et al., 2012) 

 0.60 Multispectral Vegetation indice (Pullanagari et al., 2012) 

 0.84 Hyperspectral PLSR (Biewer et al., 2009) 

 0.16 Hyperspectral SMLR (Zhao et al., 2007) 

 0.90 Hyperspectral Vegetation indice (Albayrak, 2008) 

 0.79 Hyperspectral PLSR (Schut et al., 2006) 

Neutral detergent 

fibre 
0.75 Hyperspectral PLSR (Pullanagari et al., 2011) 

 0.20 Hyperspectral Vegetation indice (Starks et al., 2006b) 

 0.30 Hyperspectral SMLR (Starks et al., 2006a) 

 0.28 Hyperspectral ANN (Starks & Brown, 2010) 

 0.42 Multispectral SMLR (Pullanagari et al., 2012) 

 0.58 Hyperspectral SMLR (Zhao et al., 2007) 

 0.85 Hyperspectral Vegetation indice (Albayrak, 2008) 

Ash 0.65 Hyperspectral PLSR (Pullanagari et al., 2011) 

 0.87 Hyperspectral PLSR (Biewer et al., 2009) 

 0.57 Hyperspectral PLSR (Schut et al., 2006) 

Metabolisable 

energy 
0.83 Hyperspectral PLSR (Pullanagari et al., 2011) 

 0.80 Hyperspectral PLSR (Biewer et al., 2009) 

Organic matter 

digestability 
0.83 Hyperspectral PLSR (Pullanagari et al., 2011) 

 

 

Statistical methods for explaining the foliar chemical information 

A range of statistical methods have been devised to extract the useful information from the 

spectral reflectance of the vegetation. This process is made difficult because reflectance at 

each wavelength is influenced by a number of confounding characteristics of the vegetation. 

An approach of calculating vegetation indices and regressing against the desired vegetation 

parameter has been widely used in the experimental studies because of their simplicity in 

interpretation. Typically, a vegetation index mathematically calculated using reflectance 

values of the spectra at different wavelengths. For example, normalised difference vegetative 

index (NDVI), is a combination of visible and near infrared wavebands and is a prominent 
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index for characterising the vegetation features. In reality, the sensitivity of the vegetation 

indices are influenced by many confounding factors such as soil background, moisture, leaf 

thickness, leaf angle distribution, sensor view angle and dead vegetation etc. Subsequently, to 

minimise the effect of external perturbing factors, a variety of vegetation indices were 

proposed which are reviewed by Yule & Pullanagari (2009). Based on the spectral resolution, 

the vegetation indices are divided into broadband and narrow band indices. Such narrow band 

indices derived from hyperspectral sensor data. Many studies (Donald et al., 2010; Flynn et 

al., 2008; Pullanagari et al., 2012) were attempted to correlate the vegetation indices to the 

desired property of green vegetation. However, due the availability of limited spectral 

information from vegetation indices, stepwise multiple regression (SMLR) was used in 

analysis for improving the prediction accuracy. It obtains the spectral information from many 

selected wavebands. SMLR is often used in lab-NIRS for analysing quality parameters of dry 

forage samples (Marten et al., 1985). However, SMLR has some limitations such as under-

fitting and over-fitting of the models and it cannot deal the multicollinearity problems which 

is commonly exists in spectral data. To overcome these problems, partial least squares 

regression (PLSR) was introduced where it can effectively deal with multicollinearity and 

extracts useful information numerous variables particularly hyperspectral data (Pullanagari et 

al., 2011). The findings from several experiments had revealed that PLSR is a robust method 

for explaining the vegetation features with high accuracy (Biewer et al., 2009; Pullanagari et 

al., 2011). Furthermore, there are also some sophisticated methods such as artificial neural 

networks (ANN) made available for analysing the data. However, it is more complicated and 

hard to understand. Table 1 lists the success of various studies to predict pasture quality 

parameters using different sensors and statistical methods.  

 

Conclusion:  

Optical sensors have potential to explain the quality of pasture rapidly and non-destructively. 

This in-field sensing enables the farmer’s decision making regarding stock management, feed 

budgeting and precision application of inputs which results in higher profit and lower 

environmental footprint.  

 

Considerable research has been completed to develop techniques for explaining the pasture 

quality parameters using reflectance values derived from different sensors. The advances in 

sensing has progressed a long way towards improving the predictive ability of the models and 

to minimise the impact of other perturbing factors. 
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