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Abstract 

On-farm accurate and efficient use of nutrients requires advanced decision support tools for 

assigning application rates and timing. In many cases nutrient application should be varied 

spatially, due to local variations in soil fertility. Therefore soil testing positions should be 

selected to sample the likely variation, which will be due to soil and topographic features, as 

well as management history. This paper presents a method to select the sampling positions to 

take soil cores for standard soil fertility testing, with respect to the soil and topographic 

variations encountered. This is enabled by the collection of high resolution proximally sensed 

data, such as that collected by an electromagnetic (EM) survey. In this paper we present flat 

land (Massey University dairy farm) and hill country (Pohangina pastoral farm) case study 

examples because our method of selection changes for difficult, inaccessible country in 

comparison to easily accessible flat land. The method selects sampling positions with a 

statistical distribution matching the statistical distribution of the whole area. Digital 

information used to conduct this analysis, for this study, includes the co-variate datalayers: 

soil electrical conductivity (to 1 m), slope, elevation and a wetness index.    

 

Introduction 

Soil scientists now have access to a large variety of detailed, digital information that can assist 

with planning a sampling campaign. In New Zealand, land information is available from the 

LRIS portal
1
, for example a country-wide digital elevation map (25-m resolution). Additional 

resources are also listed on the National Land Resource Centre website
2
. Also site-specific 

sensor surveys can be conducted using on-the-go systems, such as EM (electromagnetic) 

surveys which collect high resolution sensor data reflecting soil texture and moisture 

differences (Hedley et al., 2004). 

 

Environmental covariates such as land cover, slope, soil maps, and EM survey data are 

proxies for soil-forming factors (Jenny, 1941). The conditioned Latin hypercube sampling 

(cLHS) method, proposed by Minasny and McBratney (2006), provides soil scientists with a 

robust sample allocation tool which uses a stack of land information datalayers to derive a 

“stratified sampling strategy”. 

 

Method 

 

Case study sites 

The Massey No.1 Dairy Unit was selected to represent an accessible, flat land farm, and a 

farm in the Pohangina Valley, was selected to represent a hill country farm, with some very 

inaccessible areas. 

                                                 
1
 http://lris.scinfo.org.nz 

2
http://www.nlrc.org.nz/resources/datasets 
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Sampling based on environmental covariates in easily accessible country 

The cLHS method has been applied to select twenty soil sampling positions at our flat land 

research site (Massey University Dairy No1 Unit) using an EM survey and terrain attributes 

derived from a high-resolution digital elevation map (DEM) (elevation, slope, SAGA 

Wetness Index). Elevation and slope are primary terrain attributes derived from the DEM. 

The SAGA Wetness Index is a secondary terrain attribute derived from slope, elevation and 

profile curvature (Boehner et al., 2002). The sampling positions proposed by the analysis are 

shown in Figure 1. Results indicate that the statistical distributions of the sampled set, 

matches with the original statistical distributions of the environmental covariates (Figure 2). 

The analysis was conducted using the R statistical environment (R Core Team, 2013). 

 

 
Figure 1: Twenty sampling locations selected by the cLHS algorithm based on EM, elevation, 

slope and SAGA Wetness Index. 

 

 
Figure 2 Comparison of the statistical distributions of the environmental covariates in the 

original GIS layers and in the 20 selected sampling locations. 

 

Sampling in a constrained environment 

In rough terrain or remote regions, sampling efficiency is affected by accessibility, i.e. slope, 

land cover, and distance from road/trail networks. GIS processing can combine these 

variables to define the “ease of reach'” of each point in the landscape from the road network 

(Figure 3). The inclusion of this information allows for the sampling locations to be closer to 

the road network, making them easier to reach for the soil scientist (Roudier et al., 2012 ; 

Figures 4, 5). 
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Figure 3 The “cost of reach” layer generated in the GRASS GIS environment from landcover 

and DEM data. 

 

 

 

 
Figure 4 Density (samples/m

2
) of the samples locations over 100 realisations of standard and 

cost-constrained cLHS for a number of samples n = 250 for a dataset in the Pohangina Valley.   

 



4 

 

 
Figure 5 Comparison of the sampling locations given by the standard cLHS implementation 

(red triangles) and the cost-constrained cLHS implementation (blue dots) plotted over a 

shaded relief map. 

 

 

 

 
Figure 6 Comparison of the statistical distributions of the environmental covariates in the 

original GIS layers, in the 250 sampling locations generated by the original cLHS algorithm 

and in the cost-constrained implementation. 

 

 

Results on continuous variables show that the features that occur in difficult terrain (mainly 

slope and rainfall) are under-sampled by the cost-constrained algorithm, because these 

features are naturally heavily penalised by the cost layer (Figures 5 and 6). The results on 

landcover and landform elements repartition present a similar trend. This is another 

illustration of what is done if the cost-constrained method is chosen: unlike the standard 

algorithm, the Latin hypercube condition cannot be as optimised, but the cost of the produced 

sampling scheme is reduced so that it can be actually implemented. 
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Conclusions 

The cLHS method has been adopted by the digital soil mapping community, and is suitable in 

the context of precision agriculture. Additionally, a method to add operational constraints to 

the standard method has been proposed to address the challenges of sampling in rugged 

terrain.  
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