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Abstract 

A cut-and-carry trial was conducted on a low Quick-test-potassium (QTK ≤4) Lismore soil 

during 2012-13 in Springston, Canterbury to test the responsiveness of a dairy pasture to 

urine, dicyandiamide (DCD) and potassium (K) applications.  Over the full year the 

applications of urine-only, urine+K, urine+DCD, and urine+DCD+K increased pasture 

production significantly over the non-urine control treatment by 23%, 29%, 36% and 42%, 

respectively..  Applications of K, DCD and DCD+K increased production over the urine-only 

treatments by 5%, 10% and 15%, respectively, for both spring and full-year totals.  There 

were no significant increases to K or DCD applications for non-urine treatments. 

 

The pasture responses to K and DCD applications were attributed to maintaining better 

balanced plant nutrition, rather than to soil K deficiency per se, as urine application 

maintained QTK levels to recommended values (QTK ~6) for the duration of the trial.  

However, K deficiency may still have occurred at times of high demand where K uptake was 

restricted by the shallow soil depth.  Whilst these differences were considered to have their 

roots, at least partly, in K nutrition, it may also reflect differences that are particular to cut-

and-carry trial management and measurement. Continual harvesting of DM reduces K 

availability quickly in some soils even after large initial K applications in urine (>800 kg 

K/ha).  The findings of this cut-and-carry trial show that regular K application can increase 

pasture DM responses both to applied urine-N and the use of a nitrification inhibitor, and not 

just when soil K levels are low. 
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Introduction 

The benefits of applying nitrification inhibitors such as dicyandiamide (DCD) to grazed 

pastures to reduce nitrous oxide emissions and nitrate leaching from animal urine spots has 

been well documented over the last ten years (Di & Cameron 2002; Di & Cameron 2005; Di 

et al. 2007).  However, pasture dry-matter (DM) responses to DCD application have been 

somewhat more varied, ranging from 0-20% (Cookson & Cornforth 2002; Moir et al. 2007; 

Menneer et al. 2008; Carey et al. 2012).  Explanations for these differences vary, ranging 

from the regional effects of temperature, moisture and timing of DCD application on inhibitor 

persistence, to the effect of differing measurement protocols (Menneer et al. 2008; Snow et al. 

2011).  Recently two papers have been published reporting quite different DM responses to 

DCD-application, one summarising results from on-farm field-scale grazing measurements 
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(Carey et al. 2012), and the other from a series of small-plot cut-and-carry trials (Gillingham 

et al. 2012).  Whilst Carey et al. (2012) reported DM increases of 19%, overall, for DCD-

treated paddocks (132 individual paddocks), Gillingham et al. (2012) reported non-significant 

differences for the majority of the small-plot trials.   

 

One theory for the different DM responses to DCD applications might be the interaction of 

potassium (K) with the nitrogen (N) retained by DCD application, especially in frequently cut 

pastures that are K-limited or deficient.  Dry-matter responses to K application in New 

Zealand have been shown to occur through a combination of factors including N x K 

interactions, low exchangeable-K (QTK 6) and/or low reserve-K (1 cmol/kg soil),  

restricted soil depth, and K removal in cut and carry systems (e.g. under mown pasture trials) 

(Williams et al. 1986; Morton et al. 1999; Morton et al. 2001; Carey & Metherell 2003a; 

Carey et al. 2011).  Over 50 years ago During and McNaught (1961) in a cut-and-carry trial, 

showed that urine application, containing the equivalent of ~600 kg K/ha, protected the 

pasture from K deficiency symptoms for little more than a year, despite only modest levels of 

production (~7 tonnes DM/ha).  In cut-and-carry trials, large amounts of K are removed in 

herbage and if these are not adequately replaced then exchangeable-K can be run down 

quickly (Carey & Metherell 2003a).  In typical dairy-urine application trials, around 700 and 

800 kg of N and K per ha are applied, respectively, and this has probably been thought 

sufficient to counteract any prospect of K deficiency. In most field leaching experiments, 

however, urine application is often timed to coincide with maximum drainage, rather than 

maximum pasture growth, so opportunities for losses of K through leaching and/or fixation 

are potentially high (During & McNaught 1961).  If pasture is being continually removed 

(~350 kg K; ~14,000 kg DM x 2.5% K), K leaching losses significant and side-dressings of K 

are inadequate, then a DM response could occur.   

 

In a glasshouse experiment using 15 cm soil cores, Williams et al. (1989) found large losses 

of urinary K and N (~48% of total applied) in collected leachate with only 41% and 52% of 

the K and N applied, respectively, recovered in herbage. Pasture uptake of K was 

approximately equivalent to the difference in the initial exchangeable-K increase after urine 

deposition, and exchangeable-K at season‟s end (similar to initial), but the remainder was 

assumed largely lost through leaching. Similarly, During and McNaught (1961) indirectly 

showed that leaching losses of K were potentially large with little more than 20% of applied 

K found in pasture. However, these reports appear to be at odds with other New Zealand 

studies where there is evidence showing relatively low-to-modest leaching losses of K under 

urine spots for intensive grazing studies (Hogg 1981; Steele et al. 1984; Close & Woods 

1986; Williams & Roberts 1988; Early et al. 1998).  In fact, this difference may depend on 

interpretation of “loss” and whether the K retained within the soil profile remains available 

for plant uptake.  In a field study of 11 dairy soils, Monaghan et al. (1999) found that whilst 

significant losses of K of up to 68% (average 17%) could occur through preferential leaching 

below 20 cm, it was not necessarily lost to plant uptake, although this was very much 

predicated on K uptake occurring from the old root channels where leachate and new roots 

intersected.  The objective of this study was, therefore, to test the hypothesis that the lack of 

pasture response to DCD treatments in some cut and carry plot trials is due to a K limitation 

relative to N supply.  
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Materials and Methods 

Site and soil characteristics 

The trial site was situated on a long-standing Canterbury dairy farm near Springston (43.38˚ 

20‟ S, 172.21˚58‟ E), 17 km south-west of Christchurch with a mixed perennial 

ryegrass/white clover pasture on a free-draining, moderately shallow Lismore soil (Pallic 

Firm Brown).  The site was chosen principally for its low quick-test K value (~4) and 

potential responsiveness to K application.  Key chemical properties of the soil pre-trial are 

shown in Table 1.  Lismore soils are generally shallow silt loams and droughty without 

irrigation (Cutler 1968). The site was relatively stone-free to about 20 cm but increasingly 

stony below.  Annual rainfall is approximately 650 mm but irrigation (~500 mm annually) is 

applied approximately fortnightly over the main growth season using a „roto-rainer‟ irrigator 

(45 mm per irrigation).   

 

Table 1. Key soil chemical test results for the trial site Lismore soil (0-7.5 cm).  
a 
pH 6.1 

Olsen-P 28 mg/L
 

Quicktest -Ca 8 

Quicktest-Mg 29 

Quicktest -K 4 

Quicktest-Na 11 

CEC 16 cmol/kg 

Reserve-K 3.6 cmol/kg 

Sulphate-S 14 mg/kg
 

Organic-S 5 mg/kg 

Base saturation 65% 
a
 Soil test methods according to Blakemore (1987)  

except reserve-K test (Carey & Metherell 2003b). 

 

The site was fenced off from grazing, mowed and pegged out in early April 2012 and 

treatments were applied in late May 2012. Because of the large volume required, a  synthetic 

urine solution was prepared as outlined by Clough et al. (1998) containing a dissolved mixture 

of urea, glycine (90:10 N content), potassium -bicarbonate, -chloride and -sulphate.  

Individual plots were 2.5 m
2
 in area (5 m x 0.5 m; 0.5 m buffer between) and treatments were 

replicated 17 times in a randomised block design consisting of a 2x2x2 factorial; urine (1x 

700 kg N/ha; 1x 860 kg K/ha), DCD (2x 10 kg AI/ha) and K (7x 40 kg K/ha as potassium 

chloride). The large degree of replication was intended to overcome any effects due to 

previous grazing although this was not particularly apparent as cows had not grazed the area 

for approximately three months prior to treatment application.  Urine was applied at the rate 

of 10 L/m
2
 by watering can whilst DCD was sprayed as a fully dissolved solution a day after 

urine application and again, separately, in late July.  The potassium chloride treatments were 

applied after each of the first three harvests but then every second harvest (7x 40 kg/ha) once 

quick-test-K levels reached 9-10.  Fertiliser urea was applied after every harvest (8x 20 kg 

N/ha) to every plot to simulate typical South Island dairy farm practice. The treatments are 

shown in Table 2.  
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Table 2. Summary of trial treatments 

   
Urine 

(kg N,K/ha) 

DCD 

(kg AI/ha) 

KCl 

kg K/ha 

1. Control 0/0 0 0 

2. Control+DCD 0/0 20 0 

3. Control+K 0/0 0 280 

4. Control+DCD+K 0/0 20 280 

5. Urine 700/860 0 0 

6. Urine+DCD 700/860 20 0 

7. Urine+K 700/860 0 280 

8. Urine+DCD+K 700/860 20 280 

 

 

Pasture and soil measurements 

Harvests were conducted approximately monthly once the main growing season began and 

consisted of a single 5 m long mown strip, approximately 0.5 wide, that was weighed, and a 

subsample taken for DM content and chemical analysis.  Two qualitative clover surveys were 

conducted in October 2012 and March 2013 measuring clover proportion by cover using one 

0.2 m
2
 quadrat per plot placed 0.5 m in from start of each plot.  Total-N and organic-C were 

measured in the dried pasture samples using an Elementar Vario-Max CN Elemental Analyser 

whilst pasture-K was determined after a nitric-acid/hydrogen peroxide microwave digestion 

(CEM MARS Xpress ) using a Varian 720 ICP-OES (Inductively coupled plasma optical 

emission spectrophotometer).  Pasture production and uptake of K and N were calculated 

from these measurements.  Soil sampling (0-10 & 10-20 cm) of 6 of the 17 blocks was 

undertaken at the completion of the experiment and samples sent for reserve-K (Carey & 

Metherell 2003b) and exchangeable-K analysis (Blakemore et al. 1987).  Standard soil tests 

were also performed on bulked treatment replicates in July and at the end of the trial.  

Statistics used analysis of variance for all individual harvests and cumulative totals using the 

Genstat (9th ed., version 9.1.0.150) statistical program (GenStat Committee 2009).  Duncan‟s 

multiple range test was also used for detecting individual treatment differences. Means and 

least significant differences (LSD) are reported at the main and interaction level.   

 

Results and discussion 

Dry-matter production 

Unsurprisingly, application of urine significantly increased (P<0.001) total and spring DM 

production but DCD and potassium chloride application also increased production (P<0.01-

0.001) as main effects (Figure 2 & Table 3).  There were individual urine+DCD, DCD+K and 

urine+K interactions in some harvests but only the urine+DCD interaction was significant for 

the full season (P<0.001).  Multiple range comparisons for individual treatment totals using 

Duncan‟s test showed that the effect of K application on DM production was greatest for the 

urine treatments (P<0.05) with effects between individual non-urine treatments not significant 

(Table 3).  Generally, there were few significant effects between non-urine treatments for 

totals or individual harvests.  Over the spring growth period (cuts 1-5), pasture production 

was 32% greater in the urine-only treatment compared to the non-urine treatment.  Over the 

same period pasture production was 39%, 45% and 51% higher for the urine plus K, DCD and 

DCD+K treatments, respectively, compared to the control non-urine treatment. Over the full 
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year the increase in pasture production in the urine-only treatment over non-urine was 23%, 

and 29%, 36% and 42%, for urine plus K, DCD and DCD+K treatments, respectively (Table 

3).  Applications of K, DCD and DCD+K increased production over the urine-only treatment 

by 5%, 10% and 15%, respectively, for both spring and full-year totals (Table 3) although by 

cut 7 the DM production for urine and non-urine treatments was largely similar.  

 

 

 
Figure 1. Monthly rainfall and mean air and soil temperatures (10 cm) for trial period 

compared with Lincoln long-term (LT) 30 year averages (1981-2010). 

 

 

Dry-matter responses to K might seem surprising given that the urine-treated pasture received 

over 800 kg K/ha in a single application but K depletion in a cut-and-carry regime under 

similar conditions has been reported before (During & McNaught 1961).  Without urine 

application there was no significant effect of DCD and/or K application on DM production 

and although urea was applied after every harvest it seems this was insufficient to provide 

much by way of an additional DM response to applied K.  Ledgard et al. (1982) also found on 

a Waikato dairy pasture that at low N application rates, and less than optimal QTK values, K 

application did not significantly affect DM yields.  Significant interactions for DM production 

were only observed in harvest 3 for urine-x-K, and in harvests 5 and 6 for DCD-x-K, although 

these represented about 20% and 24%, respectively, of total DM production.  The former 

represents a time of likely maximum N availability and rapid pasture growth whilst the latter 

denotes a time when DCD would be expected have its biggest impact (Nov-Jan) having 

prolonged N availability (Sprosen et al. 2009).  Unfortunately, it was also at this time that DM 

production declined abruptly obscuring any further DCD-x-K responses.  Whilst DCD 

application has been shown to be particularly effective in reducing nitrous oxide gaseous 

losses and nitrate leaching under urine patches (Di & Cameron 2002, 2007) evidence to show 

that DCD use increases pasture production has also grown (Di & Cameron 2007; Moir et al. 

2007; Carey et al. 2012). 
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Dry-matter production overall for the trial for the non-urine treatments at around 10 tonnes/ha 

was considerably lower than the norms indicated for the Canterbury region (~14-17 

tonnes/ha) even allowing for the trial running less than a full year (11 months) and lower N 

application (160 kg N/ha) than the 200 kg N/ha used for the reference values (DairyNZ 2013).  

Although the trial was irrigated,  the 2012-13 growing season fluctuated from the long-term 

means with a cooler than average winter and spring but a hotter summer, with rainfall over the 

main summer months only 60% of normal (Figure 1).  Whilst total irrigation of 585 mm was 

applied, each application (~45 mm) was only sufficient to wet the upper 15-20 cm of the 

profile to field capacity.  The presence of gravels below 20 cm meant upper soil layers dried 

out considerably between irrigations over the main summer period. Another possible reason 

was reduced N fixation from low clover coverage, and then nothing by way of animal excreta 

returns for almost 12 months creates other deficiencies or nutrient imbalances that reduce DM 

production and go towards explaining the anecdotal reports that cut-and-carry trials are less 

productive than equivalent grazing trials.  The clover fraction remained low at below 2% for 

most treatments and did not change appreciably over the trial‟s duration.  Consequently, it 

was not possible to conduct any robust statistical tests on treatment effects on clover 

composition. The benefits of good white clover coverage to DM production in New Zealand 

through improved pasture-N nutrition are well known (Brock & Hay 2001) and although K 

application might have expected to increase the clover presence, especially in deficient soils 

(Mosquera-Losada et al. 2004; Edmeades et al. 2010), it seems that the clover was too 

fragmented, and tillers too few, to bounce back within 10 months.  Whether there were other 

contributing factors to the general absence of white clover such as clover weevil are unknown.   

 

 

 
Figure 2. Total and individual DM harvest production for all trial treatments. 

Standard error and LSD (5%) bars for totals shown. 

LSD 5% 
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Table 3. Individual and total harvest DM means, relative yield (RY-Spring and Total) and total-K and -N uptake for all trial treatments 

and means of qualitative clover fraction survey. Statistical significance shown for main factors and interactions (LSD 5% at highest 

interaction level). Values followed by a differing letter are significantly different (P<0.05) using Duncan’s multiple range test. 

Treatments Cut 1 Cut 2 Cut 3 Cut 4 Cut 5 Cut 6 Cut 7 Cut 8 Spring RY Total RY 
K 

uptake 

N 

uptake 

Oct-

12 

Mar-

13 

Final 

QTK 

 kg/ha kg/ha % kg/ha % kg/ha Clover %  

Control 559 998 1786 1446 1586 823 1083 1171 6375 1.00 9452 a 1.00 152 286 1.3 1.9 4 

Cont+K 551 979 1774 1451 1651 823 1083 1154 6404 1.00 9463 a 1.00 190 281 0.9 2.2 10 

Cont+DCD 533 959 1818 1396 1543 879 1028 1140 6250 0.98 9297 a 0.98 145 282 0.9 1.3 4 

Cont+DCD+K 599 1032 1800 1466 1702 998 1056 1154 6599 1.04 9807 a 1.04 190 295 2.1 1.5 7 

Urine 1345 1650 2133 1471 1819 1102 980 1138 8418 1.32 11638 b 1.23 268 373 1.5 0.6 6 

Uri+K 1487 1779 2249 1527 1798 1156 1031 1167 8839 1.39 12193 c 1.29 316 400 2.2 0.3 11 

Uri+DCD 1503 1814 2428 1662 1834 1334 1060 1198 9241 1.45 12833 d 1.36 311 441 0.6 0.4 6 

Uri+DCD+K 1451 1841 2619 1699 2040 1456 1065 1215 9650 1.51 13416 e 1.42 328 459 0.6 0.9 9 

Urine *** *** *** *** *** *** ns ns *** *** *** *** *** *** - - 

DCD ns ns *** ** ns *** ns ns *** ** *** *** * *** - - 

K ns ns * ns ** ** ns ns ** ** ** ** *** * - - 

Urine*DCD ns ns *** ** * ** * ns *** *** *** *** ns *** - - 

DCD*K ns ns ns ns * * ns ns ns ns ns ns ns ns - - 

Urine*K ns ns * ns ns ns ns ns ns ns ns ns ns ns - - 

LSD (5%) 156 142 144 124 153 98 92 84 466 0.07 510 0.05 27 26 - - 
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Nitrogen and potassium uptake and soil K measurements 

Urine treatments received in excess of 800 kg N/ha from both urine and fertiliser-N 

application but only about half was recovered in pasture N uptake (Table 3).  Whilst N uptake 

was up to 100% greater for urine over non-urine plots over the first three harvests (not 

shown), it slowly declined and by trial‟s end N uptake was only ~50% greater overall (~290 

vs. ~420 kg N/ha).  Strong statistical differences for urine, DCD and urine+DCD (p<0.001) 

treatments were all recorded for N uptake whilst K application also enhanced N uptake 

(p<0.05).  Strong differences also occurred overall for K uptake for urine (p<0.001) and 

fertiliser K application (p<0.001), and to a lesser extent, DCD application (p<0.05) with 

around 300 kg K/ha or ~80% more K (range 72%-114%) recovered in urine treatments than 

non-urine (~160 kg K/ha) by trial‟s end (Table 3).  Potassium uptake on urine treatments was 

initially 2-3 times greater than non-urine treatments for the first 3 harvests but declined 

abruptly after (not shown). Final QTK measurements showed similar values to initial values 

for non-K treatments but urine treatment QTK values were ≥6 at the final harvest (Table 3). 

 

Response mechanisms 

By definition, K availability may have been at sufficiency levels (Roberts et al. 2009) but the 

overall size of this pool may still be limited by the reduced soil depth and a contributing 

factor to the DM response. In general, where there is high N availability, a near equivalent 

amount of K must also be present to maximise crop or pasture production and indeed this 

maxim has been at the forefront of balanced nutrition fertiliser studies studying crop N-x-K 

interactions (Gething 1993).  Although K has been shown as important for a number of 

physiological functions in plants, a simple explanation for an increased DM response is that 

K
+
 ions act as an accompanying cation carrier for NO3

-
 ions from the roots to plant tissues 

(Bar-Tal 2011).  Sinclair et al. (1996) and Morton et al. (1998) both showed for New Zealand 

mixed pastures that obtaining maximum DM response requires balanced nutrition.  This 

implies that even where soil K levels might be considered adequate, if mineral-N is present in 

a disproportionately larger amount then production will be less than maximal.  A second 

factor and obvious characteristic of any cut-and-carry trial is the continual removal of large 

quantities of nutrients in pasture herbage with K one of the largest.  Under such regimes, rapid 

decreases in soil-K levels are likely to follow, especially if the soils are relatively shallow and 

of modest cation storage capacities.  Studies showing pasture K uptake from depths well 

below the standard soil sampling zone demonstrate that this can be a significant contributor to 

total-K uptake (During & Campkin 1980; Carey & Metherell 2003a).   

 

Conclusions 

Potassium and DCD application both increased DM yield as main effects on urine-treated 

plots (p<0.01 and 0.001, respectively) in a cut-and-carry dairy pasture trial but not on non-

urine treated plots.  There was a DCD-x-K interaction pasture DM response in two harvests (5 

& 6) but a large decrease in DM production following these two harvests meant no further 

significant responses were recorded and the interaction was not significant overall.  This 

occurred at a time when the benefit of applying DCD might be expected to be greatest.  Lack 

of vigour in later harvests of cut-and-carry trials after a year without grazing is not uncommon 

despite basal fertiliser application and may be a contributing factor to the lower responses 

reported for DCD application in a series of cut-and-carry trials summarised by Gillingham et 

al. (2012).  Grazing trials such as those described by Carey et al. (2012) do not have to 

contend with the large scale removal of nutrients as in cut-and-carry trials since nutrients are 

re-deposited, albeit patchily, across the paddock, largely maintaining the nutrient status quo.  

Cut-and-carry trials, by their nature, do not have this nutrient re-cycling aspect.  When used in 

conjunction with DCD application, there is evidence to show that K application in cut-and-

carry trials can be crucial to fully evaluate the DM response effect of DCD treatments, 

whether to prevent K deficiency or to be in balance with N uptake. 
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