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Abstract  
Minimising root zone losses has rightly been the main focus in recent years of measures to 

reduce agricultural land use impacts on freshwater quality. However, root zone losses are just 

the beginning, as far as managing to water quality limits is concerned. To be able to fully 

explore all potentially available management options, the entire ‘source  

transport/transformation  impact’ chain needs to be understood.    

Where, when, and to what extent the root zone losses impact on freshwater bodies depends 

on the transport and transformation processes occurring in the vadose zone – groundwater – 

surface water continuum. We will be elucidating these processes using a combination of New 

Zealand and European examples. 

Understanding the „where‟ requires investigation of the relative importance of the various 

subsurface flow paths (e.g. artificial drainage, interflow, shallow and deeper groundwater). 

Modelling of the subsurface hydrological system also helps to define the groundwater 

catchments that contribute water (and the nitrate it carries) to a monitoring site. These 

groundwater catchments do not necessarily match the topographically defined surface water 

catchments.  

Regarding the „when‟, it is essential to consider the lag times, both in the vadose zone and in 

the groundwater system. Depending on the relative importance of the various flow paths, not 

all nitrate lost from the root zone will reach a surface water body at the same time. The 

resulting distribution of transfer times further complicates establishing the link between an 

impact observed in a surface water body and the land use activity that has caused it.  

As for the „extent‟ to which root zone nitrate losses impact on freshwater bodies, it is critical 

to account for attenuation processes occurring along the flow paths. The two key nitrate 

attenuation processes are mixing/dilution and denitrification (occurring below the root zone).  

While groundwater denitrification has to date received relatively little attention in New 

Zealand, its potentially substantial role is recognised by many European drinking water 

supply companies and regulatory authorities. Accordingly, new policy initiatives in Europe 

have started taking account of the spatially variable nitrate reduction along the flow paths 

from the source to the impact zones.  

 

Introduction  
When considering diffuse pollution of our freshwater resources with nitrogen lost from 

agricultural production systems, there has traditionally been a strong focus on the root zone 

as the source of this pollution, while the ‘source  transport/transformation  impact’ 

chain has received much less attention. This is in agreement with the observation that „source 
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control‟ is usually the most effective means of limiting freshwater pollution and reflects that 

land use and land management decisions by individual land owners/managers determine the 

extent of these losses. Accordingly, various means have been developed to 

determine/estimate nitrogen losses from the root zone of a paddock, farm block, or farm. 

Lysimeters can provide local information, but their use is limited by the high spatial variation 

inherent in pastoral systems (Lilburne et al., 2012). Look-up tables have been compiled in an 

attempt to provide long-term average nitrate nitrogen rates for each relevant land use under 

different soil types and rainfall zones in an entire region (Lilburne et al., 2010). Most 

importantly, continued development of the nutrient budgeting model OVERSEER has 

extended its applicability to most land use types at the national scale 

(http://www.overseer.org.nz/). 

The start of the New Zealand Government‟s freshwater management reform agenda in 2009 

has highlighted the need to better understand the „source  transport/transformation  

impact’ chain, as developing policy (e.g. the National Objectives Framework – NOF) is based 

on a „reverse hydrology approach‟. Rather than starting with the source and estimating the 

impact, this approach first sets objectives and defines limits that apply to the impact end of 

the chain (e.g. nutrient concentrations in rivers, wetlands, lakes and estuaries) and then aims 

to back-calculate the tolerable level of losses from the source, i.e. the root zones of all pieces 

of land discharging nutrients to the impact site (Fig. 1).  

 

 

Fig. 1: ‘Reverse hydrology approach’ employed by recent freshwater management reforms. 

 

This back-calculation can only be carried out in a defensible manner if the transfer processes 

(i.e. transport and transformations) occurring between the source and impact zones are 

sufficiently understood, as these determine which parcels of land impact on a surface water 

body, when, and to what degree.  

Fig. 1 also shows that, from a system-control point of view, we potentially have two options 

to control what is discharged into our surface waters. Firstly, we can control the nutrient 

source, which is usually the most effective approach and the one we have focused on to date. 

However, if we manage to improve our understanding of the transfer processes, then we may 

additionally be able in the future to exert some transfer control. 

 

Unsaturated 
(vadose) zone

Saturated 
(groundwater) 
zone

Root zone

Limits

Stream 
concentrations

?

?

?

Objectives

http://www.overseer.org.nz/


3 

Transport processes  
Research undertaken in the intensively studied Toenepi dairying catchment provides an 

instructive example on the importance of understanding the relative contribution of different 

flow paths and their associated lag times.   

Long-term stream flow and stream nitrate nitrogen time series data (Wilcock et al., 2006) 

were used in an inverse modelling approach to parameterise the spatially aggregated 

(„lumped‟) catchment model StreamGEM (Woodward et al., 2013). This modelling suggests 

that near-surface flows (i.e. surface runoff, interflow) contribute only 5% of the annual 

stream flow, while fast (shallow) groundwater contributes 81%. Slow (deep) groundwater 

discharge is responsible for the remaining 14% (Fig. 2). Given that the fast groundwater 

reservoir dominates the stream flow in this catchment, it‟s crucial to understand its chemistry 

and transfer time.  

 

Fig. 2: Importance of different flow paths for stream flow generation in the Toenepi 

catchment (Woodward et al., 2013). 

 

Fig. 3 shows schematically that the different flow paths contributing to stream flow differ in 

their typical transfer times (USGS, 1998). The converging flow lines near the stream 

highlight that stream water always comprises components of varying transfer times, it is 

never one uniform age. The term „Mean Transfer Time‟ is therefore used to describe the 

average age of a water sample.   
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Fig. 3: Typical transfer times associated with subsurface flow paths (USGS, 1998). 

 

Mean transfer times (MTTs) in Toenepi Stream under baseflow conditions, i.e. when the 

stream was not affected by recent rainfall, were found to show a very strong seasonality 

(Morgenstern et al., 2010). Winter baseflow, which is dominated by discharge from the fast 

groundwater reservoir, had MTTs of less than 5 years. In contrast, the much lower summer 

baseflow, had 30-40 years MTT, reflecting the gradual depletion of the fast groundwater 

reservoir. The small trickle that was still flowing under drought conditions, and which is 

sustained by the slow groundwater reservoir, had a MTT of over 100 years (Fig. 4). These 

seasonally varying MTTs explain some of the seasonal variation of nitrate concentrations, but 

as discussed in the following section, a differing extent of attenuation along the different flow 

paths additionally influences the nitrate dynamics observed in the stream.  

 

 

Fig. 4: Variation of mean transfer time (MTT) with stream flow rate under baseflow 

conditions (see Morgenstern et al., 2010). 
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Transformation processes  
A range of different transformation processes can potentially affect nitrate concentrations 

along the subsurface flow paths. Denitrification is the most critical of these, as it is a natural 

attenuation process that under suitable conditions can remove substantial amounts of nitrate 

before it discharges into surface water bodies. Oxygen-depleted („reduced‟) groundwater, 

electron donors (e.g. organic carbon, pyrite), and microbes with the metabolic capacity for 

denitrification are prerequisites for denitrification to occur (Stenger et al., 2013).     

Based on our field work and associated modelling, Fig. 5 shows how denitrification affects 

the groundwater nitrate fluxes in the Toenepi catchment. The strongly reduced slow 

groundwater reservoir does not transfer any nitrate to the stream. However, given that the 

flow through this reservoir is small, it also attenuates only a relatively small fraction of the 

leached nitrate. In contrast, the fast groundwater reservoir, which has a variable redox status, 

is responsible for most of the nitrate discharge into the stream, but it also attenuates approx. 

36% of the nitrate lost from the root zone. The overall effect is that approx. 45% of the nitrate 

lost from the root zone is attenuated (Woodward et al., 2013).  

 

Fig. 5: Importance of different flow paths for nitrate attenuation and transfer into Toenepi 

Stream (Woodward et al., 2013). 

 

To date, little information is available in New Zealand specifically on denitrification in 

groundwater systems (see Clague et al., 2013, for an overview). Overall attenuation rates, 

which lump together all potentially occurring attenuation processes at multiple locations 

(vadose zone, groundwater zone, riparian zone, hyporheic zone, in-stream) have been 

reported in a few studies (e.g. Elliot and Stroud, 2001; Alexander et al., 2002; Clothier et al., 

2007). The reported overall attenuation rates are generally high, ranging from 39 to 76%. 

However, it is conceivable that the effect of groundwater lag times was not always 

sufficiently taken into account when calculating these rates.  
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European examples for the significance for denitrification in groundwater systems  
In New Zealand, research into denitrification in groundwater systems is still in its infancy. 

However, there is a comprehensive body of literature on groundwater denitrification in many 

northern hemisphere countries. Within Europe, groundwater denitrification is particularly 

widespread in the north-west (e.g. Belgium, northern Germany, Denmark).  

 

The northern German state of Lower Saxony, which has a size similar to Canterbury, 

complemented their routine groundwater monitoring programme in 2006 by adding „Excess 

N2‟ determinations. „Excess N2‟ is the fraction of the dissolved dinitrogen (N2) contained in a 

groundwater sample that cannot be 

explained by atmospheric sources, but 

is due to denitrification occurring 

within the groundwater system. An 

overview of the results to date is 

shown in Fig. 6 (from Meyer & 

Elbracht, 2012). Analysis of more than 

600 samples demonstrates that the 

overall average concentrations of 

nitrate (21 mg/L NO3) and excess N2 

(19 mg/L expressed as NO3) are very 

similar. This indicates that averaged 

across the entire state, nearly half of 

the initial nitrate in land surface 

recharge is denitrified in the 

groundwater system.  

Fig. 6: Excess N2 concentrations (expressed as mg/L NO3) in groundwater samples from 

Lower Saxony, Germany (from Meyer & Elbracht, 2012). 

 

In Denmark, which is slightly smaller than 

Canterbury, there is a strong focus on 

understanding the N-load reduction between 

the root zone and the coastal waters 

surrounding the country. Accordingly, „N 

reduction maps‟ like the one shown in Fig. 7 

have been produced (from Kronvang et al., 

2009).  

Regarding environmental policy, Denmark 

has recognised that the goal of diminished N-

loads to the sea can be achieved by two 

mechanisms: firstly, by reducing N leaching, 

and secondly, by exploiting the spatially 

varying N reduction between the root zone 

and the sea. That is what we call the 

„assimilative capacity‟.  

Fig. 7: N reduction map for Denmark (from Kronvang et al., 2009). 
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Fig. 8: ‘Source  transport/transformation  impact’ chain for the example of Denmark 

(modified from Blicher-Mathiesen et al., 2013). 

 

Given that leaching losses were halved in Denmark between 1985 and 2003, achieving 

further reductions would be very costly for the country (Blicher-Mathiesen et al., 2013). 

Therefore, Denmark is currently working on new policy that aims to complement the „source 

control‟ approach pursued to date with a „transfer control‟ option. This option aims at making 

use of the spatially varying assimilative capacity along the transfer pathways to the sea. If 

nitrate losses from a given piece of land are presumed to be strongly attenuated before 

reaching the sea, then less stringent land use rules will be applied compared with those for 

pieces of land where little attenuation is to be expected during the transfer (Fig. 8). Rather 

than introducing new rules uniformly, this spatial differentiation is considered the most 

effective means to achieve further load reductions to the sea. 

 

Conclusion 

In New Zealand, there still remains substantial potential for further leaching loss reductions, 

i.e. source control. However, overseas experience and emerging NZ data suggests that 

explicitly taking account of attenuation processes occurring between the bottom of the root 

zone and the water body for which objectives are set could create some headroom in 

catchments constrained by limits. Intensifying research into the subsurface transport and 

transformation processes would ultimately enable us to add a transfer control option to our 

nutrient management tool kit.  
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