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Abstract 
Current hill farming practices rely on the skill of the farmer and previous experience to guide 

key elements of the operation such as stocking rates. The use of remotely sensed 

hyperspectral data raises the possibility to reduce some of the guesswork from the system by 

identifying pasture species being farmed and use that information to raise net returns. The 

diurnal and seasonal variations in plant reflectance were investigated using hyperspectral 

proximal sensing, this paper examines if these techniques were sufficiently robust to be 

practically useful. 

The primary difficulty in application of remote sensing technology to the hill farm 

environment is the potential spatial and temporal variability of species in different regions of 

New Zealand. Monoculture plots of a number of turf species were used to ascertain the level 

of daily and seasonal variability within the species groups and to investigate how it might 

impact species identification.  

Spectral data was collected from the plots using an ASD FieldSpec® with CAPP which 

collects spectral reflectance from 350nm to 2500nm in the electromagnetic spectrum. This 

was completed over a one year period. The species on the chosen plots were monocultures of 

7 species with different cultivars for two species. Linear discriminant analysis (LDA) and 

partial least squares regression (PLSR) were carried out on the full spectrum data.  

A U test was used to identify the most effective wavebands to use where data reduction was 

necessary; however where data processing is less limited the optimum number of bands for 

discrimination were identified. Where the instrument collecting the data is not limited there is 

an advantage in using a larger number of wave bands. In this experiment it was found that 

including up to 400 wavebands over the VIS/NIR SWIR range was useful.  

The techniques used were successful in identifying the species with a high level of accuracy. 

The diurnal and seasonal changes within the plants were clearly detectable by LDA although 

they did not affect the ability to discriminate between species.  

Introduction 
The sheep and beef sector contributed $5.4 billion (2.5%) to the New Zealand economy in 

2013 (Statistics, 2013). New Zealand hill farms where much of this production takes place are 

characterised by varied, often steep, terrain which limits the possibilities for pasture 

improvements such as reseeding. Hill farm pasture is often an eclectic mixture of many 

species with variable feed values.  

Regardless of the pasture type, information on distribution and quality is crucial for 

maximising outputs and managing inputs. Primary to the question of feed quality is species 

composition. The feed value of different grass species varies (Jackson et al., 1996) so 
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knowing which species dominates a sward would enable better management practices to be 

developed. Intensive ground based data collection is physically difficult and cost prohibitive 

on hill farm locations. It is thus essential that we develop techniques to gather the necessary 

information remotely.  

The benefit to farming in general and hill farming in particular, to have site specific 

information on pasture composition is difficult to overstate. It could inform better feed 

budgeting, stock management and fertiliser management and all would contribute to fiscal 

savings and maximising returns for the farmer.  

Hyperspectral sensors collect light reflected from objects such as vegetation in a series of 

contiguous bands. They can have hundreds or thousands of bands which vastly improves the 

spectral resolution of the sensors compared to their multispectral counterparts. This increased 

definition in the spectral resolution allows them to identify a greater range of materials 

(Goetz, Vane, Solomon, & Rock, 1985). They provide better vegetation classification results 

than multispectral sensors and their narrow bands allow for selection of bands and creation of 

narrowband indices for a range of biophysical and biochemical properties (Galvão, 

Epiphanio, Breunig, & Formaggio, 2011). 

A number of studies have looked at identification of species from hyperspectral reflectance 

readings (M. Cho, Sobhan, Skidmore, & de Leeuw, 2008; M. A. Cho et al., 2010; Ghasemloo, 

Mobasheri, & Rezaei, 2011; Prospere, McLaren, & Wilson, 2014; Vaiphasa, Skidmore, de 

Boer, & Vaiphasa, 2007; Zomer, Trabucco, & Ustin, 2009). The approaches taken to solve 

the problem are as varied as the applications for which the information is intended.  

The output from hyperspectral sensors carries a lot of information from nutrient content to 

species composition (Bin, Ostland, Peng, & Ruiliang, 1999; M. I. Sobhan, 2007; Tarpley, 

Reddy, & Sassenrath-Cole, 2000). A large proportion of the data from hyperspectral sensors 

can be redundant (Pal & Foody, 2010; Thenkabail, Lyon, & Huete, 2011). The problem with 

the vast amount of data that hyperspectral sensors gather is that having too many dimensions 

in the data can reduce rather than improve accuracies (Hughes, 1968; Pal & Foody, 2010). 

This naturally leads to exploration of techniques to reduce the dimensionality. Use of various 

indices or selection of a limited number of important bands that carry the relevant information 

while reducing classification error has become the norm (Liu & Motoda, 1998; Pal & Foody, 

2010; Schmidt & Skidmore, 2003; Thenkabail et al., 2011). Those studies that choose bands 

rather than use prescribed indices must determine which carry the most or most important 

information (Pullanagari et al., 2012; M. I. Sobhan, 2007). A great number of statistical 

techniques have been adapted or developed for this task.  

The primary pigment in plants is chlorophyll which enables the plant to convert light energy 

into carbohydrate. There are a number of other pigments that assist and protect this process 

including xanthophyll cycle carotenoids. (B. Demmig-Adams & Adams, 1992; Jahns & 

Holzwarth, 2012) and are known to have diurnal fluctuations (Barbara Demmig-Adams & 

Adams Iii, 1996). The expression and use of these pigments is shown not to be species 

specific (Barbara Demmig-Adams & Adams, 1996) Gamon, Peñuelas, and Field (1992) 

created a physiological reflectance index (PRI) to study the diurnal changes in pigment 

concentrations under various stress conditions. Their index was able to track changes in plant 

physiology associated with photosynthetic efficiency. The goal of photosynthesis is to 

produce carbohydrate/starch for night time utilisation (Graf, Schlereth, Stitt, & Smith, 2010). 

The concern is that the steady build-up of this carbohydrate reserve and changes in plant 

pigments through the day could complicate species identification.  
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There are a number of problems associated with discriminating species using reflectance, 

such as the spectral similarity of some vegetation and the spectral variability within a species 

(Price, 1994; Roth, Dennison, & Roberts, 2012). The mixed nature of plant communities adds 

another level of complexity to the information contained within reflectance data. Zomer et al. 

(2009) found heterogeneous mixed communities were more difficult to delineate and required 

prior knowledge from field data and/or the use of spectral matching or unmixing. The strength 

of diurnal or seasonal biochemical or biophysical changes within the plant could have a major 

impact on the practical application of this technology to hill farming situations. 

Materials and Methods: 
This paper investigates the potential changes in reflectance on a diurnal and seasonal level 

and their impact on species identification. We explore the practicality of identifying various 

species from hyperspectral reflectance data. We examined the potential for the natural daily 

changes within the plant to alter the reflectance and examined if these subtle changes could be 

detected.  

Site Location 

The trial plots were located just outside Palmerston North, New Zealand at the offices of The 

New Zealand Sports Turf Institute (NZSTI). Managed monoculture plots of turf species were 

used to standardise the conditions and limit the variables for the experiments. Most plots were 

managed identically including mowing (25mm), irrigation and fertiliser application. Irrigation 

negated the seasonal drying of the plant and coupled with mowing prevented the grass from 

going to seed. Cotula is primarily used for bowling greens so was mown at 5mm.  

Data Collection 

Hyperspectral reflectance data was collected from eleven different fine turf areas using an 

ASD FieldSpec® pro (ASD Spectral devices, Boulder Colorado) with attached CAPP probe 

(Sanches, 2009). The species were chosen both for their purity and to represent a mixture of 

Family, genus, species and variety. All but one species was mown at around 25mm. The 

access to relatively pure swards negated the need for spectral unmixing. The consistent 

management regimes for the plots reduced variability from grass height and soil water 

content. The chosen plots were; 

o Cotula    Leptinella dioica cv. Pahia 

o Couch    Cynodon dactylon cv. Agridark 

o Kikuyu   Pennisetum clandestinum cv. Regal Stay Green 

o Egmont   Agrostis capillaris var. Egmont 

o Browntop   Agrostis capillaris cv. Arrowtown 

o Rye „4600‟   Lolium perenne cv. 4600 

o Rye „Bizet‟   Lolium perenne cv. Bizet 

o Rye „Premier 2‟  Lolium perenne cv. Premier 2 

o Blue Fescue   Festuca sp. 

o Chewing‟s Fescue  Festuca rubra subsp. Commutata 

Reflectance Data Collection 

Reflectance spectra were collected at 0800, 1000, 1200, 1400 and 1600hrs on the 3
rd

 and 5
th

 

of September (Southern Hemisphere Spring) to ascertain if daily fluctuations in plant 

chemistry were detectable. Each site was identified and marked so that each subsequent 

sample could be collected from the exact same location. Both days were bright and sunny 

with no cloud at any time. 

https://en.wikipedia.org/wiki/Cynodon_dactylon


4 

Upon completion of the initial experiment spectra from each plot were collected every 4 to 6 

weeks (weather dependant) for the remainder of the year. Unfortunately the plot that 

contained the Cynodon sample was removed towards the end of the trial period. Data 

continued to be collected for the other plots. 

Primary Data Subsets 

Three subsets of the data were created; the first data subset collated each species to investigate 

the fluctuations in diurnal reflectance over the various collection times. A total of 40 samples 

were collated for each of the 5 time periods. Each sample was made up from the average of 10 

readings. The results were used to answer the question; “Can we predict the time a sample 

was taken from the sample reflectance”? 

The second dataset was collated to investigate the differentiation of season. The samples were 

split into four groups for each species. The results were used to answer the question; “Can we 

predict the season a sample was taken from the sample reflectance”? 

The final subset collated all the data to investigate the separability of the various species and 

to look at reducing the dimensionality of the data via band selection. The results were used to 

answer the question; “What is the optimal number of bands for the best results in species 

identification”? 

Data handling  

The spectra were corrected for variations in the internal sensors using the Viewspec software 

supplied with the instrument and exported to Matlab® or R statistical software via Excel. The 

first and last 50 bands (350nm – 400nm and 2400nm – 2450nm) were excised due to obvious 

signal to noise problems leaving 2050 bands from 400nm to 2450nm.  

Statistics: 

Pre-Processing 

The raw spectral data was transformed in two ways; Standardisation ((x)-Mean(x)/Std(x)) and 

conversion to 1
st
 derivative. The derivative was calculated by application of the Gap-segment 

algorithm after filtering with a Savitzky-Golay filter. The filter with a window size of 11 

followed by gap segment derivative with a segment size of 10 was carried out using the 

„prospectr‟ package in „R‟ (Stevens & Ramirez–Lopez, 2014).   

Band Selection 

A Partial Least Squares Regression (PLSR) and Mann–Whitney U test (U test) were carried 

out in Matlab® to identify bands that were sensitive to species discrimination. PLSR is a 

multivariate regression technique that is capable of analysing data where the variables have a 

high degree of correlation, are highly noisy and may have missing components (Wold, 

Sjöström, & Eriksson, 2001).  

The U Test compared median values of each wavelength to determine if the between species 

variation was greater than the within species variation. The U test does not require a specific 

distribution  (McKnight & Najab, 2010) so is more robust when normality cannot be 

confirmed. The process is systematically repeated for each wavelength and for every 

combination of species in turn. The 10 species in this trial required 45 iterations of the process 

to run. The result for each band combination is either a one (signifying a statistical difference) 

or zero and when collated can be graphed to view the bands where a difference was found 

most often (figures 2 & 3). 
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Testing 

A Linear Discriminant Analysis (LDA) projects a line that is orthogonal to the overall class 

variance and best separates the classes (Welling, 2005). The approach is applicable with 

numerical data and is a good approach for classification (Bhardwaj & Verma, 2015). The 

LDA was used here to examine each of the questions around collection time, season and 

subsequent species identification. The data was separated into training and test sets (80/20) 

prior to running the test. The LDA for the species was first carried out using a selection of 12 

of the most prominent bands as predicted by the U test. The number of bands used was 

increased and the accuracy plotted to identify the optimal number for highest accuracy. This 

approach was repeated for both standardised and derivative data. 

Results:  

 
Figure 1: Graph of average reflectance for each of the 10 plots. 

 

After a favourable comparison with Partial Least Squares Regression (PLSR) the U test was 

chosen for band selection because of its simplicity and ease of application. Results from the U 

test changed markedly from the standardised and 1
st
 derivative data as depicted in figures 2 & 

3. 

  



6 

 

Figure 2: U test results from standardised data with reflectance curve of Blue Fescue overlaid for visualisation purposes. 

The y axis represents the cumulative total of positive results when each species is compared against every other species. 

 

Figure 3: U test results from derivative data with reflectance curve of Blue Fescue overlaid for visualisation purposes. The y 

axis represents the cumulative total of positive results when each species is compared against every other species. 
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The U test from the derivative data indicated a higher importance of visible and NIR bands 

when compared to the standardised data which highlighted more bands in the SWIR. M. A. 

Cho et al. (2010) did not include any bands from the SWIR region for their study on savannah 

tree species. They suggested that some bands in the SWIR might have improved their results. 

I. Sobhan, Vaiphasa, and Skidmore (2007) also found important bands for discrimination in 

the visible part of the spectrum but noted a reduced number of bands in the NIR. They found 

important bands for species descrimination in a number of regions including the SWIR and 

concluded that bands within these regions „share‟ information to descriminate species. 

Collection Time 

The LDA was able to predict the collection time for each species with high accuracies. 

Collection time was predicted for Cotula, Couch and the three varieties of Ryegrass with 

100% accuracy. Some reduced accuracy (95% to 97.5%) was seen with Blue Fescue, 

Browntop, Chewings fescue, Egmont and Kikuyu. In all instances the inaccuracy manifested 

at the end of the day where the test showed some difficulty in deciding between 2pm and 4pm 

for those species. 

 

Figure 4: Confusion matrix for Cotula and Egmont for prediction of sample collection times a)08.00 b)10.00 c)12.00 d)14.00 

e)16.00.  

 

  

Egmont Cotula 
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Season 

The LDA was able to predict the season and species with an overall accuracy of 92%.  

 

Figure 5: Confusion matrix for predicted and actual season and species. The quantities in each group vary because the LDA 

training and test groups were randomly chosen.  

 

Species 

The LDA accuracy for standardised and derivative data reached peak accuracy at 96.96% and 

98.04% respectively. The number of bands needed to achieve that accuracy was 404 and 266 

respectively. Both datasets performed well and showed an improved accuracy when a portion 

of the spectral signature was used instead of the entire spectral signature. Table 2 shows 

improved accuracies using the bands selected with derivative data. The improved accuracies 

are evident when smaller quantities of bands are used but the differences shrink when the 

numbers of bands used increases.  

Table 1: LDA accuracy results using standardised data with various numbers of bands chosen via the U test. Accuracy is 

seen to peak at 404 bands. 
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Table 2: LDA accuracy results using derivative data with various numbers of bands chosen via the U test. Accuracy is seen 

to peak at 266 bands. 

   

Table 3: LDA accuracy using numbers of bands selected randomly from the entire spectrum of standardised data.  

 

Randomly selected bands proved every bit as useful and predictive especially when larger 

numbers were used. This corresponds well with the other data that showed improved 

performance with greater numbers of bands. The problem with the random selection of bands 

is the possible variability of results and problems with replication. 

Spectral regions descriptive capability 

The U test with standardised reflectance data predicted bands in the visible and SWIR as 

primary to species identification which corresponds well with I. Sobhan et al. (2007). The 

LDA using the derivative data contradicted this by predicting less influence from the SWIR 

and more in the NIR. To help clarify the relationship spectra from each region was analysed 

separately to ascertain their comparative discrimination power. Standardised data was used 

for the comparison rather than the derivative data. The LDA of the visible (400-750nm) 

predicted species with 97.68% accuracy, NIR (750-1250nm) 93.39% and the SWIR (1250-

2450nm) 79.46%.  

Discussion/Conclusion: 
The ability of the LDA to distinguish collection time and season was impressive although not 

altogether unexpected as the variability of plant physiology due to environmental factors is 

well known (Magney, Vierling, Eitel, Huggins, & Garrity, 2016). The difficulty the test 

encountered identifying the collection time with some species was interesting primarily 

because it consistently occurred in each case at the end of the day. The fact that not all the 

species exhibited this trait points to a possible divergence in species physiology. Apart from 

Kikuyu the species that proved more difficult to categorise in the later part of the day are less 

adapted to high growth competition situations. This leads us to believe that the criteria that 

change the spectra through the day (and therefore allow identification of the collection time) 

must have reached an asymptote in some species. This is feasible given the high light 

conditions experienced during the trial. It is speculated that this could relate to a build-up of 

xanthophyll cycle pigments, carbohydrate storage or a combination of biophysical properties. 

The samples were collected in early spring which may help to explain the inclusion of Kikuyu 

in this group as Kikuyu is much less active at that time of year (Betteridge & Haynes, 1986). 

The results are based on limited data but raise intriguing questions around species competition 

strategies that hyperspectral data may be able to assist with answering. Further examinations 

during days where cloud reduces light levels and on days where sunlight hours are longer 

Summer) might be a good follow-up study.  Seasonal fluctuations in plant reflectance were 

clearly identified with 92% classification which infers that each species changes in a 

measurable way over the year. The differences in plant reflectance both diurnally and 
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seasonally did not restrict the capability for the LDA to identify the species. This 

classification was however limited by the fact that the species were managed; irrigated, 

fertilised and mown which only addresses part of the story of how plant reflectance can 

change through the year (Asner, 1998). There is little doubt that we can separate species when 

they are sampled at similar points in time. The question of whether we can distinguish a 

particular species from samples taken under different growth and stress conditions is yet to be 

fully answered. Price (1994) gave a concise list of reasons why it may be difficult or 

impossible to always distinguish any given species from spectra alone and it has been 

suggested by others (Cole, McMorrow, & Evans, 2014; M. I. Sobhan, 2007) that 

identification may need to be defined by spectra taken at a particular time or growth period to 

be most effective. 

The number of bands necessary for discrimination varied with the pre-processing method 

although both datasets ended up with similar prediction maxima. This difference in sensitivity 

however has little to do with the pre-processing method. The pre-processing method 

influenced the U test band selection. Standardised data indicated a larger number of predictive 

bands in the SWIR while the derivative data did not. The subsequent regional sensitivity test 

supported the U test from the derivative data by showing a lesser predictive power of SWIR 

bands for species. The derivative data proved a better indicator of the bands where species 

level differences were located. Subsequently bands chosen with this data had improved 

predictive power. This does not mean the transformation made the species easier to 

discriminate; it merely meant that the bands chosen carried more information than those 

chosen with standardised data. The importance of this fact becomes greater when fewer bands 

are chosen or when fewer bands are necessary due to processing restrictions. Tables 1 and 2 

illustrate this point very well with 266 bands from derivative and 404 bands from standardised 

data needed to reach maximal prediction.  

The bands carrying the pertinent information will vary depending on the species (Asner, 

1998). An understanding of this can assist with band selection but should be corroborated, 

where possible, with preliminary testing especially when a smaller number of bands are 

required.  
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