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Abstract 

Remotely sensed hyperspectral data provides the possibility to categorise and quantify the 

farm landscape in great detail, supplementing local expert knowledge and adding confidence 

to decisions. This paper examines the novel use of hyperspectral aerial imagery to classify 

various components of the hill country farming landscape. As part of the Ravensdown / MPI 

PGP project, “Pioneering to Precision”, eight diverse farms, five in the North and three in the 

South Island were sampled using the AisaFENIX hyperspectral imager. The resulting images 

had a 1m spatial resolution (approx.) with 448 spectral bands from 380 – 2500 nm. The 

primary aim of the PGP project is to develop soil fertility maps from spectral information. 

Images were collected in tandem with ground sampling and timed to coincide with spring and 

autumn seasons. Additional classification of the pasture components of two farms are 

demonstrated using various data pre-processing and classification techniques to ascertain 

which combination would provide the best accuracy. Classification of pasture with Support 

Vector Machines (SVM) achieved 99.59% accuracy. Classification of additional landscape 

components on the same two farms is demonstrated. Components classified as non-pasture 

ground cover included; water, tracks/soil, Manuka, scrub, gum, poplar and other tree species. 

The techniques were successfully used to classify the components with high levels of 

accuracy. The ability to classify and quantify landscape components has numerous 

applications including; fertiliser and farm operational management, rural valuation, strategic 

farm management and planning. 

1.0 Introduction 

1.1 Farm Landscapes 

New Zealand hill farm landscapes often have extremely complex and varied networks of 

vegetation both within pastures (Kemp & Lopez, 2016) and in the wider environment. Meat, 

fed on pasture species, is the primary production output from most hill country farms. Of 

critical importance to production therefore, is the forage yield from pastures. A primary 

component of yield estimation is pasture area. In other farm environments this might just be a 

matter of measuring the boundary of a paddock but hill farms often have large areas, within 

the paddock, where other vegetation has established or areas that were never cleared for 

grazing. Understanding current production enables optimal management of the resources and 

informs decision making around pasture improvement. A considerable amount of research has 

been carried out to assesses, the other component of forage yield estimates, forage and crop 

quality parameters (Biewer et al., 2009; Mariotto et al., 2013; Pullanagari et al., 2013; Zhao 

et al., 2007). Products are available to monitor pasture production such as the C-Dax pasture 

meter (King et al., 2010), although the use of such equipment would be problematic on steep 
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terrain. Little work has been carried out on quantification of actual farm pasture, or other farm 

vegetation areas at the farm scale. For yield estimation we need both area and condition 

(Strahler et al., 1986). A primary reason for much of the variability of hill farm vegetation is 

the variability, and severity, of the terrain which also hinders or precludes collection of data. 

Such constraints favour the use of remote sensing techniques. 

1.2 Remote sensors 

Remote sensing is the collection of data without the need to make contact or take physical 

samples directly (Campbell & Wynne, 2011). Remote sensing applications require a 

mechanism for data capture. Standard photographic cameras, an example of remote sensing, 

collect light in three bands; blue (450-495 nm), green (495-570 nm) and red (620-750 nm), 

which are combined to create a colour image. Multispectral sensors typically have 5-10 bands 

which collect light from the visible and beyond into the Near Infrared (NIR), in discrete 

portions of the spectrum. Hyperspectral sensors by contrast can have hundreds of contiguous 

narrow bands stretching through the visible and NIR into the Short Wave Infrared (SWIR) 

(Mariotto et al., 2013).  

1.3 Remote sensor platforms 

The sensor requires a platform to work from. For larger areas, such as many hill farms, 

unmanned aerial vehicles (UAV‟s) are not practical due to limitations in flight time, payload 

capacity, spectral resolution of available equipment and general issues around reliability. A 

range of satellites offer numerous options for image acquisition of land based targets but they 

also can have limitations in spatial or spectral resolution. For example free imagery from 

NASA‟s Landsat 8 satellite has 11 discrete bands from 430 nm to 1250 nm with a 30m 

multispectral spatial resolution (U.S.G.S., 2017). The AisaFENIX hyperspectral aerial imager, 

can collect 448 or more contiguous bands measuring reflectance in wavelengths from 380 nm 

to 2500 nm with a 1m spatial resolution (Specim, 2013). This increased spectral resolution 

enables identification of a greater range of materials (Goetz et al., 1985). Hyperspectral data 

provides better vegetation classification results than multispectral data and their narrow bands 

allow for selection of bands and creation of narrowband indices for a range of biophysical and 

biochemical properties (Galvão et al., 2011).  

In this paper hyperspectral imagery of two hill country farms are classified in order to 

produce a map of vegetation distribution on each. The first example deals with the need for 

highly accurate pasture mapping to inform a range of on-farm decision processes. The second 

adds a number of additional components for water, pine, Manuka, gum, poplar and open soil 

or tracks to the classification. These maps are likely to become more and more important in 

farming, to at first plan and later to justify, management decisions.  

2.0 Materials and Methods 

The classification work was carried out on imagery from Patitapu and Ohorea Stations both 

located in the North Island of New Zealand. Patitapu is a 2,600 ha. sheep and beef station 

located about 25km southeast of Eketahuna in the Wairarapa region. Ohorea is a 5,420 ha 

station located on state highway 4 about 12km south of Raetihi.  

2.1 Image acquisition 

An AisaFENIX hyperspectral sensor manufactured by Specim (Finland) was used to obtain 

imagery for the two hill country farms. Methods for data collection, georectification and 

atmospheric correction were identical to those of Pullanagari et al. (2016).  
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2.2 Data Pre-Processing 

Four standard pre-processing steps were used; each was assessed for their effect on the 

classification results.  

2.3 Data-Processing and Image Classification 

Pixel based classifiers attempt to assign each pixel to a class regardless of its neighbour. 

Given that each pixel is an individual measurement, the approach seems valid. Pixel based 

classification has a long history in remote sensing and was the first widely accepted and 

practiced method for classification. The methods used in this paper are pixel based classifiers. 

Support Vector Machines (SVM) 

SVM were intended for binary classification applications and as such are considered one of 

the best „out of the box‟ classifiers. SVMs are an adaptation of the maximal margin classifier 

which selects a hyperplane for classification. It defines the optimal separating hyperplane that 

is furthest from the training observations. The margin is the distance between the hyperplane 

and the nearest training observations. The nearest training observations are the support 

vectors (James et al., 2013; Vapnik, 1995).  

2.4 Pasture Classification 

Regions of Interest (ROI) were selected, from the Patitapu image, to represent the two desired 

classes within the image; pasture and non-pasture. The non-pasture ROI included elements 

that were not pasture including trees, bush, tracks, buildings, bare soil and water. The pasture 

class contained grassed pasture only.  

ROI for training the classification were collected from the true colour image. Table 1 lists 

details of ROI collected for pasture classification. Each pre-treatment was classified using 

both a linear Support Vector Machine (SVM) classifier and Mahalanobis Distance (MD). The 

training ROI were used as class definitions. All pre-processing and classifications were 

carried out using ENVI image analysis software. 

2.4.1 Accuracy Testing 

Prior to the classification a second set of ROI (Test) were collected from across the entire 

image. These additional ROI were not used for classification but held for accuracy testing 

when the classification was complete. 

Table 1: ROI collection statistics for Patitapu image. ROI for classification training and 

accuracy testing are listed with ROI and pixel count. The pixel count is the total number of 

pixels collected in the associated ROI.  

Patitapu (Spring) Training Test Training Test 

 
(ROI) (ROI) (Pixels) (Pixels) 

Pasture 14 999 4,762 39,186 

Non-pasture 24 789 3,631 31,981 

     
     

2.5 Vegetation Classification 

Regions of Interest (ROI) were selected, from the Ohorea image, to represent each of the 

desired classes within the image. The twelve desired components were pasture, pine trees, 

Manuka, tracks & open soil, water, shadow, poplar 1, poplar 2, gum, rush, bush/scrub and 

other trees. 
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3.0 Results 

3.1 Patitapu Pasture Classification  

Classification accuracy is measured by summing the number of correctly classified pixels and 

dividing by the total pixels collected. The classification of Patitapu (figure1) achieved a 

99.11% accuracy when identifying pasture from non-pasture, other statistics from the 

classification are summarised in Table 2. Pre-processing method had little impact on overall 

accuracy. This accuracy may result from the strength of the SVM as a binary classifier or 

from the detail carried in the hyperspectral data. 

Table 2: The accuracy and associated statistics for the pasture classification of Patitapu.  

 
SVM Classification Accuracy for Patitapu  

 
Overall Accuracy (70534/71167) 99.11% 

 
Kappa Coefficient 0.982 

 

 
Ground Truth (Pixels) 

 Class Pasture Non-Pasture Total 
 Unclassified 0 0 0 
 Pasture 39156 603 39759 
 Non-Pasture 30 31378 31408 
 Total 39186 31981 71167 
 

     

 
Ground Truth (Percent) 

 Class Pasture Non-Pasture Total 
 Unclassified 0 0 0 
 Pasture 99.92 1.89 55.87 
 Non-Pasture 0.08 98.11 44.13 
 Total 100 100 100 
 

     Class Error Commission Omission Commission Omission 

 
(Percent) (Percent) (Pixels) (Pixels) 

Pasture 1.52 0.08 603/39759 30/39186 

Non-Pasture 0.1 1.89 30/31408 603/31981 

     Class Error Producer User Producer User 

 
(Percent) (Percent) (Pixels) (Pixels) 

Pasture 99.92 98.48 39156/39186 39156/39759 

Non-Pasture 98.11 99.9 31378/31981 31378/31408 
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Figure 1: SVM classification map for the spring survey at Patitapu Station. The callout 

displays the level of detail in the classification which was able to distinguish even small 

pockets of pasture amongst the bush.  
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3.2 Vegetation Classification 

 

Figure 2: Segment from the 12 class classification of Ohorea Station. The black area to the 

west was a missing part of the survey image and/or outside the survey area.  

The classification of 12 components from the Ohorea image (figure 2) showed some 

variability with regard the accuracies (figure 3). All but three classes had accuracies above 

90%. Manuka, Scrub and Rush had accuracies of 75%, 42% and 61% respectively. However 

these categories are most difficult to separate due to their mixing with elements from the other 

categories. The scrub category had the lowest of all the accuracies but the majority of the 

inaccurate classification of this component was for trees (31%) that are mixed through the 

scrub. This may be a result of an inaccurate classification or from the selection of incorrect 

ground truth pixels from the image. Ground truthed data collected from the farm was 

supplemented with image based collection, especially in difficult to reach areas. The process 

worked very well for the majority of image components. 
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Figure 3: Graph of accuracies for each component from the Ohorea Station image. 

Table 3: Confusion matrix of classifications for Ohorea Station.  

 

Table 4: Classification error statistics for Ohorea Station. Error of commission are where the 

classifier classified a pixel as class X when it was not X. Error of omission is where the 

classifier failed to classify a pixel as class X when it was X. 
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Image Component 

Image component accuracy for Ohorea Station classificaion 

Class Poplar Pasture Water Shadow Non_Veg Pine Manuka Scrub Trees Rush Gum Poplar2 Total

Poplar 95.81 0.06 0 0.06 0 4.82 0 0.21 0 0 0.28 0 2.06

Pasture 0.7 99.06 0.03 0.06 1.73 0.88 0.11 14.07 0 38.45 0 0.37 47.57

Water 0 0 99.88 0 0 0 0 0 0 0 0 0 11.28

Shadow 0 0 0 98.19 0.27 0.22 3.44 0.58 0.65 0 0 0 6.14

Non_Vegetatio 0 0.01 0.09 0 98 0 0.11 0 0 0 0 0 3.79

Pine 3.49 0 0 1.46 0 93.64 0 1.24 0.04 0 3.97 0.12 1.84

Manuka 0 0 0 0 0 0.44 75.57 1.86 1.58 0.54 0 0.12 2.67

Scrub 0 0.02 0 0 0 0 1.26 42.7 4.12 0 0 0 4.77

Trees 0 0.02 0 0.12 0 0 19.15 31.07 93.3 0 0 0.5 12.27

Rush/wetland 0 0.83 0 0 0 0 0.34 4.44 0.15 61.01 0 0.87 3.26

GUM 0 0 0 0 0 0 0 0.07 0.15 0 95.75 0 1.21

Poplar2 0 0 0 0.12 0 0 0 3.75 0 0 0 98.01 3.16

Total 100 100 100 100 100 100 100 100 100 100 100 100

Ground Truth (Percent)

Commission Omission Commission Omission

Class (Percent) (Percent) (Pixels) (Pixels)

Poplar 6.47 4.19 38/587 24/573

Pasture 6.41 0.94 870/13572 120/12822

Water 0 0.12 0/3218 4/3222

Shadow 3.88 1.81 68/1751 31/1714

Non_Vegetatio 0.46 2.00 5/1082 22/1099

Pine 18.51 6.36 97/524 29/456

Manuka 13.63 24.43 104/763 213/872

Scrub 8.82 57.3 120/1361 1665/2906

Trees 30.80 6.70 1078/3500 174/2596

Rush/wetland 26.91 38.99 250/929 434/1113

GUM 1.74 4.25 6/344 15/353

Poplar2 12.32 1.99 111/901 16/806

Classification Error
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Table 5: Classification accuracy statistics for Ohorea Station. 

 

Producer accuracies are calculated by dividing the number of correctly classified pixels (from 

table 3) in a given category by the number of training set pixels used for that category. User 

accuracies are calculated by dividing the number of correctly classified pixels in a given 

category (table 3) by the total number of pixels that were classified in that category.  

4.0 Discussion 

The mapping of these hill farming areas has only been carried out to coarse levels. The New 

Zealand Land Cover Database (NZLCD) maps a series of vegetation classes for the whole 

country using satellite imagery with a 30m spatial resolution (Thompson et al., 2003). The 

improvement in map detail achievable for small areas with 1m spatial resolution AisaFENIX 

imagery is considerable.  

Hyperspectral data also provides better vegetation classification results than multispectral data 

and their narrow bands allow for selection of bands and creation of narrowband indices for a 

range of biophysical and biochemical properties (Galvão et al., 2011).  

The very high accuracies are most likely a combination of the hyperspectral information and 

fine spatial scale both of which have allowed the separation and classification of components. 

The reduced accuracy seen in some components, particularly bush, will be improved with 

more, or better, ground truth data but this can be difficult to collect when the areas in question 

are dense bush which are often in steep or otherwise inaccessible locations. The original 

purpose of the survey was to link pasture measurements to soil fertility, however this work 

demonstrates the utility of the technology for solving other problems for farmers. The full 

utility of this form of mapping will only be realised when it is made available to farmers and 

farm consultants but there is clear scope for its use as a tool to inform stock management, 

fertiliser placement via precision application, carbon stock monitoring and rural valuation. 

This form of mapping in conjunction with standardised measurement and valuation tools such 

as those suggested by Grafton et al. (2016) could enable comparison of management 

techniques to improve the industry as a whole. 

5.0 Conclusion 

This study suggests high accuracies for vegetation classification are possible at the farm scale 

which has the possibility to drive and inform many on farm and ancillary industry decisions. 

 Mapping of vegetation in these areas, to this level of detail or accuracy has not been possible 

until recently. The access to hyperspectral imagery will allow future mapping of these 

complex environments in ever increasing detail as methods are developed to extract more of 

the detail carried in the spectra. 

Producer User Producer User

Class (Percent) (Percent) (Pixels) (Pixels)

Poplar 95.81 93.53 549/573 549/587

Pasture 99.06 93.59 12702/12822 12702/13572

Water 99.88 100.0 3218/3222 3218/3218

Shadow 98.19 96.12 1683/1714 1683/1751

Non_Vegetatio 98.00 99.54 1077/1099 1077/1082

Pine 93.64 81.49 427/456 427/524

Manuka 75.57 86.37 659/872 659/763

Scrub 42.70 91.18 1241/2906 1241/1361

Trees 93.30 69.20 2422/2596 2422/3500

Rush/wetland 61.01 73.09 679/1113 679/929

GUM 95.75 98.26 338/353 338/344

Poplar2 98.01 87.68 790/806 790/901

Classification Accuracies
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