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Abstract 

The 36.7 Mha Brigalow Belt bioregion of north-eastern Australia is characterised by brigalow 

(Acacia harpophylla) vegetation on clay soils. This bioregion has been extensively cleared, 

predominantly for agriculture. The Brigalow Catchment Study commenced in 1965 to quantify 

the effects of agricultural development on water and soil resources. It is a paired, calibrated 

catchment study consisting of three catchments that were monitored in their virgin state for 17 

years. One catchment remained virgin brigalow as a control and the other two catchments were 

cleared and developed for cropping or grazing. Post-development monitoring commenced in 

1984 and continued for 27 years. In 2010, land management practices for cropping and grazing 

were modernised and another two adjacent catchments with alternative management practices 

were incorporated into the study.  All five catchments have been monitored since 2010. 

 

Clearing brigalow for cropping and grazing doubled total runoff, while peak runoff rates 

increased 96% and 47%, respectively. Various legume based pastures showed similar runoff 

responses. Overgrazing increased both total runoff and peak runoff rates compared to 

conservative grazing. Deep drainage increased from <0.34 mm/yr to 59 mm/yr under cropping 

and 32 mm/yr under grazing.  

 

Soil fertility was reduced under agriculture. Total nitrogen declined 61% under cropping and 

37% under grazing. Similarly, organic carbon declined 46% under cropping and 8% under 

grazing. 

 

Runoff from brigalow contained 81 kg/ha/yr of total suspended solids, 2.61 kg/ha/yr of total 

nitrogen and 0.08 kg/ha/yr of total phosphorus. Post-development, these parameters increased 

645%, 42% and 253% from cropping, respectively. Grazing increased loads of total suspended 

solids 146% and total phosphorus 721%; however, nitrogen was only 43% of brigalow. 

Legume based pastures posed a risk to water quality until the plants were well established. 

Overgrazing substantially increased loads of sediment and nutrients in runoff compared to 

conservative grazing. 
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The Brigalow Catchment Study has shown changes in hydrology, soil fertility and water quality 

resulting from developing brigalow for agriculture. This >50 year study can be considered a 

model in its own right and a sentinel site for management and climate impacts within the 

Brigalow Belt.  

Introduction  

The brigalow bioregions of Queensland and New South Wales occupy 36.7 million hectares, 

stretching from Dubbo in the south to Townsville in the north. Since European settlement, 58% 

of this bioregion has been cleared. In 1962, the Brigalow Land Development Fitzroy Basin 

Scheme commenced, resulting in the clearing of 4.5 million hectares for cropping and grazing. 

This clearing represents 21% of all clearing in the brigalow bioregions, and represents 32% of 

the Fitzroy Basin Catchment area. In order to quantify the effect of land clearing and land use 

change on hydrology, soil fertility and water quality, the Brigalow Catchment Study 

commenced in 1965 (Thornton et al. 2012). 

Methods 

Site details 

The Brigalow Catchment Study (24°48’S and 149°47’E) (Figure 1) is located near Theodore 

in the Fitzroy Basin of central Queensland. The project is a paired, calibrated catchment study 

consisting of three calibrated catchments monitored since 1965 (C1 to C3), a fourth catchment 

monitored since 2010 (C4) and a fifth catchment (C5) monitored since 2014. The catchments 

vary in size from 12 to 23 ha. Soils within each catchment are predominantly Grey and Black 

Vertosols, with an average slope of 2.5%. In their virgin state, all catchments were vegetated 

with brigalow scrub communities. The region has a semi-arid, subtropical climate. Annual 

average hydrological year (October 1965 to September 2017) rainfall was 650 mm.  

 

 

Figure 1. An aerial view of the Brigalow Catchment Study showing the five monitored 

catchments (C1 to C5). C1 is a virgin brigalow scrub control while C2 to C5 all currently 

support grazing on improved grass or improved grass and legume pastures. 
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The Brigalow Catchment Study can be separated into four experimental phases: 

 

1) Calibration (1965 to 1982) 

Rainfall and runoff were monitored from three contiguous catchments for 18 years. 

Mathematical relationships were derived to predict runoff from Catchment 2 (C2) and 

Catchment 3 (C3) given known runoff from Catchment 1 (C1) (Thornton et al. 2007).  

 

2) Development (1982 to 1983) 

Catchment 1 remained virgin brigalow scrub to provide a control treatment, while Catchments 

2 and 3 were cleared and the fallen timber burnt in-situ. Catchment 2 was then developed for 

cropping with the construction of contour banks and grassed waterways, whilst Catchment 3 

was developed for grazing by the planting of improved grass pasture. 

 

3) Land use comparison (1984 to 2010) 

In C2, the first crop sown was sorghum (Sorghum bicolor) (September 1984), followed by 

annual wheat (Triticum aestivum) for nine years. Fallows were initially managed using 

mechanical tillage (disc and chisel ploughs), which resulted in significant soil disturbance and 

low soil cover. In 1992, a minimum tillage philosophy was introduced and in 1995 opportunity 

cropping commenced with summer (sorghum) or winter ((wheat, barley (Hordeum vulgare) 

and chickpea (Cicer arietinum)) crops sown when soil water content was adequate. No fertiliser 

inputs were used (Radford et al. 2007). Catchment 3 was grazed at industry recommended 

stocking rates with utilisation to result in no less than 1000 kg/ha of pasture available at any 

time.  

 

4) Adaptive land management (2010 to present) 

Catchment 2 was planted to butterfly pea (Clitoria ternatea cv. Milgarra) ley pasture to restore 

soil fertility. Catchment 3 maintained the same treatment from the land use comparison phase 

however management was changed from a set stocking rate on an annual basis to variable 

stocking rates with the introduction of wet season spelling.  

A fourth catchment, C4, was added to the study at this time. The land use of C4 was grazing 

on improved leucaena (Leucaena leucocephala cv. Cunningham) and buffel grass pasture. This 

catchment had a prior history of cropping and grazing before the planting of leucaena on 8 m 

hedgerows in 1998.  

 

A fifth catchment, C5, was added to the study in 2014. Catchment 5 was also a grazed 

catchment with improved pasture (purple pigeon grass, Seteria incrassate) however stocking 

rates in this catchment were typically three times the safe long-term carrying capacity. This 

catchment also had a prior history of cropping and grazing before its inclusion in the study. 

The two catchments added to the long-term study during the adaptive land management phase 

were characterised by similar soils, slope and native vegetation to the three original catchments. 

A calibration period in an uncleared state before their inclusion into the study was impossible 

due to their prior history of agricultural land use. Thus, although the two new catchments have 

their own unique hydrological characteristics, their relationship to the original catchments in 

an uncleared state is unknown. 
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Rainfall and runoff measurements 

Each catchment was instrumented to measure runoff using a 1.2-m steel HL flume with a 3.9 

by 6.1m approach box. Water height through the flumes was recorded using mechanical float 

recorders. Rainfall was recorded adjacent to each flume and at the head of the catchments using 

tipping bucket rain gauges with a 0.5 mm bucket (Thornton et al. 2007). 

 

Drainage measurements 

Deep drainage under native vegetation was determined using steady-state chloride mass 

balance (Silburn et al. 2009). Transient chloride mass balance was used to calculate deep 

drainage for various periods since clearing. These approaches rely on the water-soluble nature 

of chloride and assume complete mixing of the soil and water and one dimensional downward 

piston flow below the root zone. Both methods require an estimate of chloride input in 

infiltration and consideration of other potential sources and outputs. Chloride input was 

determined via soil sampling similar to soil fertility parameters (below); however, samples 

were taken down the profile rather than confined to the surface 0.1 m. The soil profile samples 

used for this deep drainage and chloride mass analysis were taken in 1981 (pre-development), 

1983, 1985, 1987, 1990, 1997 and 2000. 

 

Soil fertility measurements 

Within each catchment, three permanent monitoring sites were established to monitor soil 

fertility. Establishment of the 20 m by 20 m sites was done using double stratification. Initial 

stratification was based on soil type and slope position with a monitoring site in an upper and 

lower-slope position on Vertosols, and the third on a Sodosol. Secondary stratification was by 

way of 10 sub-units, each 4 m by 10 m, within each site. Soil samples were collected from the 

surface 0.1 m of the soil profile at each monitoring site using manual coring tubes of 0.05 m 

diameter. Samples were a composite of a minimum of 8 (20 pre-clearing in 1981; and in 2008 

and 2014) 0.05 m-diameter cores; 2 cores (5 pre-clearing in 1981; and in 2008 and 2014) being 

taken from around 4 fixed points within each sub-unit. Soil samples were collected annually 

from pre-clearing in 1981, to 1987 and then in 1990, 1994, 1997, 2000, 2003, 2008 and 2014, 

with samples retained after analysis in a long-term storage archive.  

 

Water quality measurements 

Discrete water quality samples were obtained using autosamplers (Thornton and Elledge 2016). 

Auto-samplers were programmed to sample every 0.1 m change in absolute stage height. Event 

based water quality loads were calculated by dividing the hydrograph into sampling intervals, 

multiplying the discharge in each interval by the sample concentration, and summing the loads 

over all the intervals. The intervals were defined as the start of flow to the midpoint of sample 

one and sample two, the midpoint of sample one and sample two to the midpoint of sample two 

and sample three, and so on. Event based EMCs were calculated by dividing total event load 

by total event flow. Mean annual EMC was calculated by averaging the event based EMCs. 

These values were then averaged to determine the long-term EMC for each catchment. To 

calculate cumulative long-term water quality loads, observed event flow from 1984 to 2010 

was multiplied by the long-term EMC (2000 to 2010) for the respective catchment.  

Results and Discussion 

What are the impacts of land use change on hydrology, soil fertility and water quality? 

In their virgin state, the catchments behaved similarly, with average annual runoff being 5% of 

annual rainfall. Once cleared, total runoff from the cropping catchment increased to 11% of 

annual rainfall and total runoff from the grazing catchment increased to 9% of annual rainfall; 

however, timing of the individual runoff events varied between land uses. This increase in 
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runoff reflects water use patterns that are much more seasonal than natural vegetation. Both 

annual cropping and introduced pasture have significant periods of the year without transpiring 

plants to extract water from depth. It is suspected that this change in water use pattern is the 

dominant mechanism responsible for hydrologic change, with soil cover, structural decline, 

and surface roughness being secondary factors (Thornton et al. 2007).  

 

Prior to land development, average peak runoff rates from the three brigalow scrub catchments 

were 3.2, 5 and 2 mm/hr for catchments 1 to 3 respectively. Peak runoff rate increased 

significantly from both the cropping and grazing catchments after adjusting for the underlying 

variation in peak runoff rate due to climatic variation between the pre- and post-development 

periods. The average peak runoff rate increased by 5.4 mm/hr (96%) for the cropping 

catchment and by 2.6 mm/hr (47%) for the grazing catchment. Increases in peak runoff rate 

were most prevalent in smaller events with an average recurrence interval of less than 2 years 

under cropping and 4 years under grazing. Soil moisture is a key driver of both runoff and peak 

runoff rate in this landscape (Thornton and Yu 2016). 

 

Steady-state chloride mass balance indicated deep drainage of 0.13–0.34 mm/year across all 

catchments prior to land development. Large losses of soil chloride occurred under cropping 

and smaller losses occurred under grazing. Transient chloride mass balance gave average deep 

drainage of 59 and 32 mm/year for cropping and grazing catchments, respectively, during the 

development phase (1981–1983) when the land was bare following clearing of native 

vegetation and prior to establishment of crops or pastures. In the 16.7 years following 

establishment of agricultural land uses (1983–2000), transient chloride mass balance gave 

average deep drainage of 19.8 (range 3.3–50) and 0.16 (2.2 to 1.4) mm/year, respectively, in 

cropping and grazing catchments. The drainage rate under grazing was similar to that under 

brigalow scrub (Silburn et al. 2009) 

 

Initial clearing and burning of brigalow scrub resulted in a temporary increase of mineral 

nitrogen, total and available phosphorus, total potassium and total sulfur in the surface soil (0 

to 0.1 m) as a result of soil heating and the ash bed effect. Over the subsequent 32 years fertility 

declined significantly. Under cropping, organic carbon declined by 46%, total nitrogen by 61%, 

total phosphorus by 29%, bicarbonate-extractable phosphorus by 54%, acid-extractable 

phosphorus by 59%, total sulfur by 49% and total potassium by 9% from post-burn, pre-

cropping levels. Fertility also declined under grazing but in a different pattern to that observed 

under cropping. Organic carbon showed clear fluctuation however no significant decline was 

observed. Total nitrogen declined by 37%. Total phosphorus declined by 14%, equating to only 

half of the decline under cropping. Bicarbonate-extractable phosphorus declined by 64% and 

acid-extractable phosphorus by 66%; both greater than the decline observed under cropping. 

Total sulfur declined by 23%; less than half of the decline under cropping. A similar decline in 

total potassium was observed under both land uses with a 10% decline under grazing. The 

primary mechanism of nutrient loss depended on the specific land use and nutrient in question 

but included removal in grain and beef; mineralisation and oxidation; redistribution and 

stratification within the soil profile and nutrient pools due to plant growth and litter recycling; 

uptake and storage in above ground biomass; and loss in runoff and leaching. 

 

Long-term water quality modelling indicated that changing land use from virgin brigalow scrub 

to cropping or grazing increased loads of total suspended solids, total and dissolved inorganic 

phosphorus, and ammonium nitrogen. The well-managed (unfertilised) pasture system 

decreased nitrogen in runoff compared to runoff from virgin brigalow scrub (Elledge and 

Thornton 2017). In years when runoff occurred from the agricultural catchments but no runoff 
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occurred from the virgin brigalow scrub, water quality loads were entirely anthropogenic and 

totally attributable to land use change. Certain agricultural management activities also increase 

water quality risk. In the cropping catchment, the largest event based total suspended solids 

load followed a chickpea crop with mechanical tillage for weed control in the fallow prior to 

and following the crop. Chickpeas leave little stubble cover to protect the soil surface from 

raindrop impact so preserving stubble cover with zero till fallow management both before and 

after the crop would likely have given a better water quality outcome. The establishment stage 

of pasture is, not unexpectedly, the period of greatest risk to water quality in that management 

system. The risk then declines over time with water quality trending towards that of long-term 

grazed landscapes (Thornton and Elledge 2014). 

 

Working towards land management practice change in the wider catchment 

These finding from the Brigalow Catchment Study give an indication of the effects of land use 

change across the broader Fitzroy Basin. This is important as the Fitzroy Basin discharges 

directly to the Great Barrier Reef lagoon and, according to the 2017 Scientific Consensus 

Statement, key Great Barrier Reef ecosystems continue to be in poor condition. This is largely 

due to the collective impact of terrestrial runoff associated with past and ongoing catchment 

development, coastal development activities, extreme weather events and climate change 

impacts (Waterhouse et al. 2017). 

 

Under the Reef 2050 Water Quality Improvement Plan (https://www.reefplan.qld.gov.au/), 

using policy driven by best available science, work to decrease land-based runoff in the reef’s 

waters is now well advanced. Significant efforts have been made to implement improved land 

management practices throughout reef catchments in order to decrease the flow of nitrogen, 

pesticides and sediments to the reef. Perhaps most relevant for a New Zealand audience is that 

the activities under Reef Plan appear quite similar to those listed in the current New Zealand 

Governments 12 Point Plan for Freshwater Quality. The lessons that Australia has learnt while 

running our reef plan monitoring and modelling program may well assist in delivering your 

policy so there is a conversation to be had. 

 

The success of reef plan is measured by the Paddock to Reef Integrated Monitoring, Modelling 

and Reporting Program. The program uses monitoring and modelling tools at the paddock, 

catchment and marine scale to enable reporting in the short-to-medium term. The findings from 

studies such as the Brigalow Catchment Study are extrapolated across sub catchments using 

models such as HowLeaky? and APSIM. The outputs are then aggregated and routed to the 

basin outlet using the Source Catchments modelling platform. Using revised land management 

data, water quality improvements from continually improving land management practices can 

be estimated, allowing the Reef Plan program to evaluate, prioritise and continuously improve 

the efficiency and effectiveness of its on-ground actions. 

 

Results show progress in some areas; however, faster uptake of improved land management 

practices is required to meet the water quality targets. The 2016 Great Barrier Reef Water 

Quality Report Card shows that across all reef catchments, the modelling suggests a 14% 

reduction in sediment loads to the Great Barrier Reef. Within the Fitzroy Basin, the modelling 

suggests a reduction of less than 10%. 

 

This is a common story worldwide. The 2017 International Land Use and Water Quality 

conference (http://www.luwq2017.nl/) demonstrated that many countries have water quality 

targets but are struggling to meet them. Improved land management practices are being adopted 

but often won’t deliver the magnitude of change that is needed to meet targets and ensure the 

https://www.reefplan.qld.gov.au/
http://www.luwq2017.nl/
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health of waterways into the future. This is more than a green environmental issue. These are 

the same waterways and aquifers that provide our drinking water.  

 

This highlights the need to develop, test and understand new land management practices to 

improve water quality, and will result in the next generation of new research questions for the 

Brigalow Catchment Study. 

Conclusion 

This 54 year longitudinal study clearly shows the impacts of land use change and land 

management on hydrology, soil fertility and water quality. The long-term data records can be 

considered a model in their own right and are capable of answering questions well beyond the 

initial scope of the study. Given the level of foresight and investment that is required to 

implement and maintain these experiments, it is unlikely that new studies of this nature will be 

commissioned. Revisiting these historical datasets and adapting the design of the ongoing 

experiment will allow researchers to answer new questions not thought of, or not of concern 

when this study commenced more than five decades ago. 

 

Accessing the Brigalow Catchment Study 

The Brigalow Catchment Study data portal provides easy access to additional information 

about the study and its publications. The portal also provides real time viewing of rainfall and 

runoff data from the study catchments. Please connect with the Brigalow Catchment Study at 

www.brigalowcatchmentstudy.com 
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