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Abstract 

 

Animal urine patches are the major source of gaseous and leaching losses of nitrogen (N) in 

livestock grazed pastoral systems. These losses can be reduced by detecting and treating these 

patches by applying N inhibitors to slow down the N transformations, thus allowing more time 

for plant uptake. In this study, we aimed to validate the output of the newly developed and 

modified Spikey-R (under a New Zealand Government, Global Research Alliance research 

project) for detecting and measuring the configuration of urine patches. We compared 

measurements form Spikey-R against thermal imagery from a handheld camera taken during 

urine deposition, as well as imagery taken from a remotely piloted aircraft system (RPAS or 

‘drone’) two weeks after deposition. Patches were created by applying 1, 2 and 3 l of synthetic 

urine heated to 40 ⁰C over two soils contrasting in drainage (poorly drained, Massey No. 4 

Dairy, and well drained, AgResearch Ruakura) and moisture level (below and at field capacity).  

Spikey-R data generally compared well with the reference map produced from the thermal 

imagery, with similar mean patch areas for each soil moisture condition (+/- 12 %) and 

comparable patch extents and shapes reported. On average, the patch areas reported by Spikey-

R were larger than those detected by the thermal imagery when soil moisture was at field 

capacity and smaller or similar when soil moisture was below field capacity.  Over the 48 hours 

post-deposition, the patch area as detected by Spikey-R increased slightly (~5%). The drone 

was successful in detecting all urine patches via elevated pasture response 14 days after 

application at the Massey No. 4 Dairy site but was less effective at AgResearch Ruakura. 

Further results on the potential of these sensing technologies and needs for further 

improvements are also discussed.    

Introduction 

Grazed pasture soils exhibit high potential for N2O emissions from urine deposited by grazing 

livestock and are the primary source of direct and indirect N2O emissions, contributing c. 64% 

of New Zealand’s 8.59 Gg CO2e agricultural N2O emissions (MfE 2016). Accurate mapping 

of spatial distribution of urine patches is essential to accurately quantify N transformations and 

N losses from grazed pastures. Nitrous oxide emissions from soils in urine patches are 

controlled by a complex set of interacting soil, plant and environmental factors. Moreover, the 
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timing of physical transport of the urine and amendment (urease and/or nitrification inhibitors) 

through the soil regulates the proportion of urine treated and the achieved level of NH3 and 

N2O reduction achieved (Marsden et al. 2016). Because of these multiple interacting factors, 

the proportion of urine-N lost through gaseous emissions of NH3 and N2O and through N 

leaching, and their response to applied mitigation amendments, may vary with both the changes 

in soil and environmental conditions and the distribution of urine-N within the patch.   

 

Approaches to identifying urine patches include visually monitoring cows in the field (White 

et al. 2001), automated monitoring using electromagnetic induction, electrical conductivity 

measurements and optical sensing (Moir et al. 2011; Betteridge et al. 2013; Dennis et al. 2013; 

Misselbrook et al. 2016), and ground-based sensing (Gusmão et al. 2016; Bates & Quin 2016). 

More recently, airborne technologies, such as remotely piloted areal systems (RPAS), LiDAR 

and satellites using hyperspectral and near infra-red imaging, and temperature sensors have 

been applied to map vegetation attributes linked to urine deposition (Dennis et al. 2013). 

 

There is room for improvement however, as field conditions are often not ideal for deploying 

these technologies. An improved and automated urine patch detection algorithm that uses a 

simple digital camera operating in the visible spectrum (Red/Green/Blue; RGB) would be 

useful to industry and researchers alike and widely applicable given the prevalence of RPAS.  

 

In New Zealand, the ground-based sensor system was developed to detect fresh urine patches 

and selectively apply N loss mitigation treatments (Bates & Quin 2016). Due to low sensor 

intensity and limited sensor spike depth, Spikey® cannot accurately map the three dimensional 

(3-D) spatial configuration of urine distribution in the detected patch, which is fundamental to 

optimising targeted management for reducing patch N loss. Therefore, Spikey® has been 

modified to ‘Spikey-R’ that consistently and accurately identifies, measures and maps urine 

patch size, 3-D shape and location. This study aimed to validate ‘Spikey-R’ - an application of 

the soil conductivity approach – as a research-grade solution for detecting and mapping the 

location and area of cow urine patches under controlled trial conditions. It also aimed to 

investigate the feasibility of using an off-the-shelf Remotely Piloted Aircraft System (RPAS 

or ‘drone’) to map the pasture response to urine. 

Methodology 

Trial Setup 

Six replicates of three different volumes (1 l, 2 l, and 3 l) of artificial urine at 40°C were 

randomly applied over a 3 x 6 grid. This pattern was repeated for two different soil moisture 

levels: 100% and approximately 60% field capacity, referred to here as ‘wet’ and ‘dry’, 

respectively. This was repeated for two different New Zealand sites: poorly drained soil at 

Massey No. 4 Dairy Farm near Palmerston North, and well-drained soil at Ruakura Research 

Farm near Hamilton. The artificial urine was deposited using a purpose-built frame with a 

nozzle positioned 1.5 m above ground level. The height and flow rate were designed to mimic 

a ‘typical’ natural urination.  

 

Prior to application, each site was isolated from its farm for at least 3 months to reduce the 

impact of previous urine patches and nitrogen application. Grass was periodically cut and 

removed, with a final mow the day before application. Soil moisture levels were controlled by 

irrigation and shielding of each moisture zone as required by weather conditions. 

 

On the day of application, 400 mm square steel plates were strategically placed as Ground 

Control Points (GCPs) for both the RPAS and Spikey-R (see Figure 1). Positions of most plates 
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were surveyed using a Trimble GeoXH 6000 GNSS (Global Navigation Satellite System or 

‘GPS’) with external Tornado antenna. Plates around the perimeter of the trial took priority 

while some interior plates were also surveyed according to time allowed. Prior to application 

the RPAS was flown to create an orthomosaic which formed the ‘base’ image for 

georeferencing the Spikey-R data and thermal imagery. Sensor-specific methods are described 

in following sections. 

 

Thermal Camera 

A FLIR-C2 handheld thermal camera captured oblique (approximately 70° elevation) thermal 

and optical images of each urine patch within one minute of deposition. Thermal images were 

captured in ‘Thermal MSX’ mode which overlays the results of an edge-detection algorithm 

from the optical image over the thermal; this was essential for identifying GCPs later. As the 

imagery would require rectification as well as georeferencing, two different ground-control 

mechanisms were employed: a 1 m x 1 m plastic frame placed to border the patch, and two 

white plastic discs placed at the ‘top’ two corners of the frame. The frame and discs were placed 

immediately before the image was taken, after which the frame was moved to the next location. 

An RPAS captured an orthomosaic showing all 72 discs in place immediately following 

application, after which all discs were removed. 

 

Each thermal image was manually rectified using the built-in ‘Georeferencer’ in QGIS using 

the corners of the 1 m x 1 m reference frame with coordinates in x/y space of [0,0] (bottom-

left of image), [0,1] (top-left), [1,1] (top-right), and [1,0] (bottom-right). The transformation 

type used was ‘Projective’ (linear rotation/translation only), and the resampling method was 

‘nearest neighbour’. The spatial reference system (SRS) was set to New Zealand Transverse 

Mercator (NZTM), though any cartesian system that uses metres as its unit of measure, such 

as one of the Universal Transverse Mercator (UTM) zones, would work.  

 

Rectified images were then georeferenced, also using the QGIS Georeferencer, by selecting 

the centre of the plates in the thermal image as well as the corresponding ones in the post-

application RPAS orthomosaic. Transformation type was again ‘Projective’ which requires 

three GCPs – a problem given only two plates were practical during the field work. To get 

around this, the two plate GCPs were marked then saved as a txt file within the Georeferencer. 

This was then processed with a short Python script to insert a third artificial GCP at the lower-

left coordinate of the reference frame ([0,0]) with ‘world’ coordinates calculated from the two 

plates using simple trigonometry and prior knowledge of which direction the photographer was 

facing. This modified txt file was then reloaded over the image and processed to produce the 

final rectified and georeferenced image. This rather complicated rectification/georeferencing 

process could be simplified by using the RPAS to take images of each frame placement during 

the application process, however this would increase the logistical complexity of the field work. 

 

The processed thermal images were then manually digitised to produce a polygon for each 

urine patch, from which patch area and perimeter could be extracted for comparison with the 

other sensors using Microsoft Excel. 

 

Remotely Piloted Aircraft System (RPAS) 

A DJI Phantom 4 Pro was flown immediately prior to, and post, application with a third follow-

up flight 14 days post-application. As described above, the first two flights were to provide 

data for the other sensors while the final flight was to detect the pasture response to the urine 

patches applied two weeks earlier. Flight altitude was 40 m providing a ground sample distance 

(GSD) of less than 1 cm per pixel. Overlap and sidelap were set to 75% each. Individual images 
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were processed using Agisoft PhotoScan to create orthomosaics with a GSD of 1 cm, 

georeferenced using the metal plate GCPs described above. 

 

The 14 day post-application flight orthmosaic was analysed with the ‘ImageJ’ software 

package as used by Dennis, Moir, Cameron, Edwards, & Di (2013), though there were slight 

differences in the exact steps carried out. After some experimentation, the orthomosaic used 

was cropped in Photoscan to separate the ‘wet’ and ‘dry’ soil moisture levels as slightly 

different thresholds were found to be more effective for each. These cropped images were 

exported as portable network graphics (PNG) files with corresponding ‘world’ files – text files 

containing information that GIS tools, such as QGIS, can use to accurately place an otherwise 

ordinary PNG image on a map.  

 

These PNG files were loaded into ImageJ and a threshold was applied in the Hue, Saturation, 

and Brightness (HSB) colourspace in order to create a mask (ImageJ menu: Image -> Adjust -

> Color Threshold). Threshold values differed between moisture levels and soil types and were 

likely to depend on current pasture condition as well as lighting levels and the exact camera 

used on the RPAS, however the general range used was 60 – 80 (Hue), 0 – 255 (Saturation), 

and 0 – 100 (Brightness). After thresholding, several steps from the ‘Process -> Binary’ menu 

were used, in order: Convert to mask, Dilate, Fill Holes, Erode, Erode, Dilate, Dilate. The 

multiple ‘erode’ and ‘dilate’ steps were used to simplify the very complex edges of some 

patches as well as eliminate much of the ‘noise’ without biasing the patch area. Finally, the 

‘Analyze -> Analyze Particles’ function was used to eliminate patches smaller than 1000 pixels 

(1000 cm2 or approximately dinner-plate sized), with the ‘show count masks’ option used to 

output a unique number of each patch (important for vectorisation). The result was saved as a 

PNG file, with the world file from the input image copied and renamed to match. 

 

The ImageJ output was then translated to a GeoTIFF with GDAL so a NODATA value of 0 

could be set, then the Polygonize tool in QGIS was used to create a polygon per urine patch. 

The resulting shapefile was then edited in QGIS to insert an ID for each patch that would match 

IDs used for the thermal imagery polygons which made comparisons in Excel easier. 

 

Spikey-R 

‘Spikey-R’ is a research variant of the ‘Spikey’ urine patch treatment system. It consists of 80 

spiked metal plates arranged in a line 2 m across with a spacing of 25 mm. Plates are isolated 

into adjacent pairs, with an electric current passed through the soil between the plates and the 

voltage drop measured to give an indication of the conductivity of the soil surface (spike 

penetration is typically less than 20 mm). The entire array of discs is split into three blocks for 

recording/management purposes. The Spikey-R was towed at walking pace behind a vehicle, 

with an onboard ‘TracMap’ GNSS unit providing location data. Data was downloaded onto a 

flash drive and processed by Pastoral Robotics Ltd to produce GeoTIFF images of soil 

conductivity, with areas of higher conductivity theoretically corresponding to urine patches. 

 

Spikey-R was towed in passes over the two grids of patches at each site at 2, 4, 24, and 48 

hours post-application with care taken to include the metal GCPs in each pass. As the TracMap 

GNSS was not a high accuracy GNSS unit, the resulting GeoTIFFs required further 

georeferencing with the QGIS Georeferencer which accurately placed and scaled them 

according to the metal GCPs. The final GeoTIFFs were then loaded into ImageJ which was 

used to threshold the raw voltages recorded. Again, wet and dry soil moisture levels were 

processed separately as slightly different lower-end thresholds were used, however an 

approximate range was 1100 – 20,000. After thresholding, outliers were removed, the mask 



5 

was converted to binary, and holes were filled before being run through the ImageJ despeckle 

filter. Finally, the Analyze Particles tool was used with a threshold of 20 pixels (still 1000 cm2 

as pixels were 5 cm GSD), count masks were saved as PNGs, and world files for input images 

were copied and renamed as above to maintain the georeference. Polygons for each patch were 

then produced and manually named using the same method as the RPAS processing. 

Results 

Thermal Imagery 

Patch area distribution is shown in Figure 1, where the area of each patch increased with 

volume and soil moisture level but decreased with drainage. Mean areas by volume across all 

soil types and moisture levels were 0.275 m2 (1 l), 0.390 m2 (2 l), and 0.547 m2 (3 l). There is 

substantial variation in patch area within each volume with standard deviations in the order of 

25 to 30% of the mean. The thermal camera was able to successfully detect and map the extent 

of all patches, though it was easier to interpret images taken during colder ambient conditions 

(~ 10° C) with complete cloud cover as experienced with the Massey No. 4 (poorly drained) 

trial. 

 
Figure 1 – Urine patch size as determined by thermal imagery for (a) poorly drained soil at 

Massey No. 4 Dairy Farm, and (b) well-drained soil at Ruakura Research Farm  

RPAS  

The RPAS was flown at both Ruakura and Massey No. 4 farms and provided crucial base maps 

of each, however the patch detection performance at Ruakura was substandard with 

approximately 60% of patches detected. Performance at the Massey No. 4 site (see Figure 2 

for base map) was good, with 100% of patches detected and no false-positive results within the 

trial area. Figure 3 shows the detected areas as a percentage larger than the thermal area (i.e. 

0% means the area was the same, 100% means twice as large). This shows a pasture response 

that was typically at least two to three times as large as the original area detected by the thermal 

camera. Areal variation was similar to that of the thermal patches with standard deviations 23 



6 

– 33% of mean area (by volume). There was no trend in percentage increase with volume, 

though soil that was at field capacity (‘wet’) did show a larger increase in area of pasture 

response than soil that was below field capacity. 

 

 

Figure 2 – Orthomosaic of trial area at Massey No. 4 Dairy Farm (poorly drained soil type) 

showing artificial urine patches 14 days after application 

 
Figure 3 – RPAS pasture response area as percentage larger than the area detected by the 

thermal camera (poorly drained soil only) 

Spikey-R  

Spikey-R successfully detected all urine patches under all designed conditions up to 48 hours 

after application (maximum duration tested), however one block of discs experienced technical 

issues during the Ruakura trial with occasional areas of missing data that ran through some of 

the patches. Affected patches were excluded from analysis so as not to bias results and the 

technical issue was resolved before the Massey No. 4 trial. Spikey-R placed the detected 

patches in the same location as the thermal and RPAS once GCPs were used to fine-tune 

placement of the supplied data. 

 

Figure 4 shows the percentage difference between Spikey-R patch areas using data from passes 

made 2 hours after application and those derived from the thermal imagery. Most data points 

(83%) fell within +/- 30 % of the thermal patch area for the poorly drained soil at Massey No. 

4 Dairy (Figure 4a), while Ruakura Research Farm (Figure 4b) had 81% in this region. In 
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general, Spikey-R tended to overestimate patch size more when soil was at field capacity and 

underestimated it more when it was below field capacity. This effect was more pronounced for 

well-drained soils, however there was some missing data (see red regions of plot) so some 

caution is required (Figure 4). 

 

Investigating Spikey-R’s ability to detect patches up to two days after deposition, Figure 5 

shows some variation but no substantial trends. There can be some reduction in detected size 

after the 2 hour pass and there tends to be a slight increase in detected size from the 24 to 48 

hour post-application passes but these effects were not significant. There was a high degree of 

variability in the mapped area of each patch between Spikey-R passes which is illustrated in 

Figure 6. The poorly drained soil had a mean range of 25% of patch area with a standard 

deviation of 10 percentage points, while the well-drained soil had figures of 34% and 26 

percentage points.  

 

A brief analysis of the uncertainty of patch area was conducted by buffering and eroding the 

patch polygons by 50 mm (one ‘pixel’). The results were dependent on original patch size and 

shape with mean values ranging from +/- 37% for patches created from 1 l of artificial urine to 

33% for 2 l and 29% for 3 l. 

 

 

Figure 4 – Difference in patch size between Spikey-R (2 hours post-application) and thermal 

imagery as a percentage of the thermal patch area. Red regions indicate less data was 

available, all other boxes were generated from six measurements. 
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Figure 5 – Spikey-R mean patch area at each sampling time, by volume of artificial urine 

applied for (a) poorly drained soil at Massey, and (b) well-drained soil at Ruakura.  

Percentage values in legend indicate range as a percentage of overall mean. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 - Variability in detected patch area over 

time for poorly drained (Massey No. 4 Dairy) 

and well-drained (Ruakura Research Farm) soils. 
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Discussion 

The thermal camera was very effective at detecting and delineating the simulated urine patches 

in this trial. Pre-trial investigations found that the time window for effective capture of patches 

under cold ambient conditions (approximately 7 – 10°C) was in the order of several minutes, 

however, as ambient temperatures increase this is likely to be shorter. The size of the simulated 

patches increased with volume but also varied substantially, as can be expected under field 

conditions. Patches on the well-drained soil were smaller than the poorly drained soil. Patches 

on the ‘wet’ soil moisture level were slightly larger than the ‘dry’ for the well-drained soil type 

but this effect was not visible for the poorly-drained type.  

 

In this study, the RPAS imagery served multiple purposes: a base map of the trial area, a way 

of accurately locating all GCPs when only some were surveyed with a GNSS (due to time 

constraints), a way of georeferencing the thermal imagery in order to produce a spatially-

coherent map, and finally another method of detecting pasture response to urine patches. 

Without the RPAS the thermal camera work would have been significantly harder and the 

Spikey-R GCPs would have taken significantly longer to survey with a GNSS. The RPAS 

worked very well at detecting pasture response over the poorly drained soil, but not very well 

over the well-drained soil as the background pasture growth was too vigorous to distinguish 

from the patches by eye, let alone automatically. This was likely due to soil fertility being better 

at that site, possibly along with warmer weather conditions (different geographical location and 

trial was conducted one later in Spring than the poorly drained location). 

 

At the poorly drained site, pasture response areas were 2 – 3 times the original patch size as 

determined by thermal camera and Spikey-R. This was largely expected as grass root systems 

travel laterally as well as vertically, so grass surrounding a patch can still benefit from the 

nutrients even if it not directly over the original area of deposition. Added to this, the urine 

would likely have also moved laterally over the days following deposition thereby increasing 

its area of effect. 

 

In general, Spikey-R proved to be an effective tool for detecting urine patches by way of 

mapping soil conductivity. A better GNSS (or ‘GPS’) would vastly improve the quality of the 

actual map, however this has no impact on the detection ability. Most (> 80%) patch 

measurements fell within +/- 30% of the area as detected by the thermal camera. This was of a 

similar magnitude to the variability of detected sizes for each patch for repeat passes (means 

of 25% to 35% with large standard deviations) and on the lower end of uncertainty estimates 

(29% to 37%). The uncertainty was calculated by simply dilating or eroding a patch by a single 

pixel (50 mm) so is a reflection of the limitation of the sensor’s spatial resolution. This means 

that, if it was critical that the entire patch extent is detected and mapped, the patches detected 

by Spikey-R should be buffered by 50 mm. If a more accurate map is required, however, then 

the spatial resolution of Spikey-R needs to be increased. 

Conclusion 

This study has shown Spikey-R is an effective tool for detecting urine patches and is effective 

at mapping their location provided adequate ground control points are used. A better GNSS 

unit would remove the need for ground control. Patches were successfully detected up to 48 

hours post-application with some variation in size, but no trend over time was identified. Size 

variation is influenced by sensor resolution so in order to ensure the entire area of a patch is 

flagged, a buffer of 50 mm (one ‘pixel’) is needed. The thermal camera was very effective at 

delineating patch extent but needs supplementary ground control information to prove truly 
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useful at mapping the patches. The RPAS provided mixed results, with all patches identified at 

one site but not the other. It is likely this method is far more sensitive to background soil fertility 

and ambient weather conditions during the two weeks between deposition and detection. 
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