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Abstract 

S-map is published at a nominal cartographic scale of 1:50,000. The size of map units drawn 

at this scale means that S-map is best suited for use in regional to sub-catchment scale 

applications. S-map map units can be too large to adequately depict the spatial variation of soil 

at the farm scale, whereas applications at the national scale may not require as much detail as 

is contained in S-map. This suggests that transformations could be made to S-map that provide 

soil information that is a better fit for these scales. Transforming S-map to fit farm-scale 

applications is a downscaling exercise, whereas transforming S-map to fit national-scale 

applications is an upscaling exercise. We identified a range of methods for performing 

downscaling and upscaling. We concluded that more contextual information is required to 

adequately downscale S-map than is currently available, so our main focus in this paper is on 

methods for upscaling S-map. In general, upscaling methods can be classified based on the 

order of operations performed: (i) geometric simplification followed by attribute 

simplification, versus (ii) attribute simplification followed by geometric simplification. We 

demonstrate an application of the first approach and its effect on water balance modelling, and 

an example of the second approach via the simplification of map unit components into soil 

property groups. 

Introduction 

The level of spatial and attribute detail of a soil map with a nominal scale of 1:50,000, like S-

map, is probably most suitable for regional to sub-catchment scale applications (i.e. spatial 

extents of dimensions 104–105 m), such as land-use planning (Lilburne et al., 2012). Such a 

map may not be detailed enough to depict soil variability at the farm to paddock scale (102–103 

m), depending on the resolution of farm management and the nature of the soil variability 

(Barringer et al., 2016; Carrick et al., 2014; Manderson and Palmer, 2006). Information about 

fine-scale soil variability is increasingly required for precision agriculture (Hedley et al., 2013). 

On the other hand, a map with a scale of 1:50,000 is probably too detailed for national-scale 

applications (106 m), where only a generalised overview of the main patterns or differences 

between soils may be required. 

This has important implications. For example, a farmer may like to know precisely which soil 

sibling underlies his field out of the five that are defined in the S-map map unit that is mapped 

across it, but will require S-map to provide more detailed information about the spatial 

distribution of siblings within map units. On the other hand, a climate modeller working with 

5 km-resolution raster climate data may decide that she would like raster soil information at a 
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comparable spatial resolution but is unsure how best to generalise the information she finds in 

S-map. 

There are several ways to downscale and upscale S-map to provide soil spatial information that 

better suits these use cases. 

Downscaling and upscaling methods 

The soil map subdivides the landscape into a tessellation of polygons, where each polygon is 

linked to a soil map unit. S-map soil map units define a set of up to five soil siblings and their 

respective proportions. Several soil polygons can be assigned to a single soil map unit. In this 

section we describe a range of methods for downscaling and upscaling a polygon soil map such 

as S-map. 

Downscaling 

The purpose of downscaling a soil map is usually to produce a more detailed depiction of the 

spatial distribution of soil than is provided by the original soil map. One approach involves 

predicting the spatial distribution of the soil map units’ components, in which case the 

downscaling process is known as spatial disaggregation. In recent years a substantial body of 

research into methods for performing spatial disaggregation has developed (e.g. Häring et al., 

2012; Holmes et al., 2014; Kerry et al., 2012; Nauman and Thompson, 2014; Odgers et al., 

2014; Sarmento et al., 2017; Subburayalu et al., 2014; Thompson et al., 2010; Vincent et al., 

2018). 

We suspect that the feasibility of spatially disaggregating S-map map units is currently limited. 

This is because little contextual information, such as the landscape position of map unit 

components, is currently available to inform the disaggregation. Furthermore, fine-resolution 

environmental covariates are not available everywhere because of patchy LiDAR coverage (for 

example), and robust relationships between key soil attributes and covariates in the New 

Zealand context are often not well understood. A preliminary investigation to see if slope 

information from a digital elevation model could be used to spatially locate the siblings was 

not successful. 

Upscaling 

The purpose of upscaling a soil map is to produce a more general depiction of the spatial 

distribution of soil across an area than is provided by the original soil map. A wider variety of 

methods are available to perform upscaling than to perform downscaling, and they may be 

classified in several ways. We distinguish two modes, spatial simplification and attribute 

simplification, and note that spatial simplification may be performed before attribute 

simplification or afterwards, but the upscaled results from these two approaches will not be the 

same.  

Within each mode there are various simplification operations depending on whether the 

simplifications are focusing on vector or raster maps, taxonomic classes or soil properties, and 

categorical or numerical data. We briefly describe how each sequence of modes may be applied 

to both vector soil maps and raster soil maps, but due to space limitations we will restrict 

discussion to soil class maps. We note that numerical soil properties are readily upscaled by 

calculating numerical summary values such as the mean or range. 

Spatial simplification followed by attribute simplification 

Figure 1 illustrates the steps involved when upscaling is performed by spatial simplification 

followed by attribute simplification. The starting point is either a vector soil map or a raster 

soil map, and, as we describe below, the operations that are performed in steps 1 and 2 depend 

on the format. 
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For vector maps, step 1 involves the geometric simplification of the polygon boundaries in 

order to suit the coarser target map scale (method 1a in Figure 1). This is not a trivial task, 

because it raises questions about how much the boundaries will change, and how the changes 

affect the reliability of the generalised map (Valentine, 1981). Step 2 involves updating the 

attributes of the simplified geometry, as follows. 

 Attribute the simplified map unit polygons with the dominant soil class in the original 

map unit or define a new, generalised map unit composition. This approach discards a 

lot of information, especially if the geometric simplification merges polygons from 

several map units. 

 Retain information about all the components of the original map unit plus any other 

map units that were subsumed by it during the geometric simplification, and update the 

simplified map unit composition. This preserves the most information. 

More options are available if the target format of the upscaling is a raster map. In method 1b 

of step 1 (Figure 1), a coarse raster grid is overlaid on the vector soil map; in method 1c a 

coarse raster grid is overlaid on a finer-resolution raster soil map.  

The options for raster-based attribute simplification in step 2 are essentially the same whether 

the methods in Step 1b or 1c are employed. 

 Attribute the coarse grid cells with the dominant soil class found among the polygons 

or finer grid cells that intersect with them. 

 Retain information about all the components of the original map units that intersect the 

coarse grid cells. 

Attribute simplification followed by spatial simplification 

Figure 2 indicates the steps involved when upscaling is performed by attribute simplification 

followed by spatial simplification. The starting point is a vector soil map. The same set of 

operations could be performed on a raster soil map, but we believe there would be no difference 

between the upscaled raster soil map and a rasterised version of the upscaled vector soil map. 

In any case, step 1 involves the simplification of soil map unit attributes to inform re-labelling 

of the map units. Several methods are possible. 

Vector 

map

Raster 

map

Simplify polygon 

boundaries

Coarsen raster 

resolution

Rasterise at fine 

resolution

Simplify attributes

1

2

Overlay coarse 

raster
a b c

Spatial simplification followed by attribute simplification

Figure 1. Illustration of the steps involved in an upscaling process where spatial simplification is performed before 

attribute simplification. Dashed lines represent optional steps. 
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 Re-label the soil map units with their dominant component. 

 Re-express the map unit composition in terms of a higher-level taxon (e.g. soil orders 

rather than soil siblings), then re-label soil map units with the dominant higher-level 

taxon. 

 Simplify the soil map unit components by clustering them on functional properties in 

order to identify groups of “key soils” (Coucheney et al., 2018), then re-label the soil 

map units with the dominant key soil group. 

Step 2 involves the spatial simplification of the map unit polygons based on their new labels. 

Adjacent polygons are merged if and only if they share the same simplified label. The result is 

a spatial simplification in the sense that the simplified map has fewer polygons than the original 

soil map, but the procedure does not generalise the level of detail in the polygon boundaries. 

As Figure 2 indicates, geometric simplification of polygon boundaries is an optional additional 

step. 

Case studies 

We present two case studies. The first case study is an example of attribute simplification 

followed by spatial simplification. The second case study is an example of spatial 

simplification followed by attribute simplification, and it illustrates the effect of upscaling S-

map soil information on soil water balance modelling. 

Case study 1: Key soil groups 

The first case study is an example of upscaling by attribute simplification in order to generalise 

S-map siblings into a smaller number of key soil groups. We envisage a use case where a 

climate modeller cannot, for computer performance reasons, run her model on all the siblings 

in each climate grid cell but wishes to account for the soil variability by running her model on 

a handful of representative soils in each grid cell. If all the siblings in a grid cell could be 

aggregated into more general, functionally similar soil groups, she might be able to choose a 

set of representative soils more easily. 

Simplify soil map unit attributes

Re-label soil map units

Merge adjacent polygons with same labels

Vector 

map

Rasterise
Simplify polygon 

geometry

1

2

Attribute simplification followed by spatial 

simplification

Figure 2. Illustration of steps involved in an upscaling process where attribute simplification is performed before 

spatial simplification. Dashed lines represent optional steps. 
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Method 

Study area: We tested the approach in five windows that represent common physiographies in 

the central South Island, New Zealand: coastal plains, plains–hill-country margins, hill country, 

and intermontane basin. The size and shape of the windows were based on NIWA’s Virtual 

Climate Station Network (VCSN) grid cells1 and were approximately 5 km × 5 km in size. 

Soil information: Each window had spatially exhaustive S-map coverage. We represented the 

siblings in each window by derivatives of seven sibling- or family-level soil properties (Webb 

and Lilburne, 2011): drainage class, depth class, permeability class, texture class, topsoil 

stoniness class, presence or absence of pans, and profile available water class. All soil 

properties were represented as categorical variables. In addition, those properties whose states 

could be readily ordered (all except texture class and presence or absence of pans) were treated 

as ordinal categorical variables (Table 1). 

Attribute simplification: The key soil group upscaling is a two-step procedure. Since all seven 

soil properties are represented as categorical variables, there can be only a limited number of 

combinations of their property states. We call the different combinations of soil property states 

soil property groups (SPGs). The first upscaling step involved identifying the SPGs present 

within each window and allocating each sibling to its SPG. 

The SPGs vary in their degree of similarity to each other; for example, some are nearly identical 

except in one or two soil properties. Within each window we quantified the degree of similarity 

between SPGs using Podani’s extension to Gower’s distance, which accounts for ordinal 

categorical variables (Gower, 1971; Podani, 1999). The second upscaling step involved 

hierarchically clustering the SPGs within each window, using a complete-linkage algorithm, 

into more general groups that we call supergroups. 

                                                 
1 https://www.niwa.co.nz/climate/our-services/virtual-climate-stations 

Figure 3. Location of five windows within which the key soil group upscaling was tested in case study 1. 
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Table 1. Soil properties used to represent S-map siblings. Most values are derivatives of class values published 

by Webb and Lilburne (2011). 

To choose an appropriate number of supergroups within each window we tried to strike a 

balance between the number of supergroups and the median supergroup size: with too few 

supergroups the median number of SPGs in them is relatively large (too much generalisation), 

whereas with too many supergroups the median number of SPGs is relatively small (too little 

generalisation). Such a balance can be found at the elbow of the curve made when the number 

of supergroups is plotted against the median number of SPGs per supergroup (Figure 4). 

Results and discussion 

Table 2 indicates that the soil distribution as depicted by S-map is more complex in some 

windows than in others, despite the fact that the windows are all the same size. This is not 

purely a pedological phenomenon; it also depends on mapping methods and priorities, which 

vary over time and between mapping staff. The number of siblings in each window ranged 

from 7 to 40, the number of SPGs from 3 to 23, and the number of supergroups from 2 to 7. 

The key soil group upscaling produces supergroups whose members are more homogeneous in 

their soil properties compared to the whole set of siblings within a given window. For example,  

Table 3 describes the siblings found in window W5 on the margin of the Canterbury Plains 

near Tīmaru. The window contains 21 siblings across five soil orders in the New Zealand Soil 

Classification (Hewitt, 2010). The siblings were generalised into 14 SPGs, which were then 

hierarchically clustered into five supergroups. 

Soil property Values Type 

Drainage class Poor or very poor, imperfect; well or moderately well Ordinal 

Depth class Shallow or very shallow, moderately deep, deep Ordinal 

Permeability 

class 

Slow, moderate, rapid Ordinal 

Texture class (l+z)/c, (l+z)/s, c+c/*, l/k, l+z, p, s, s/(z+l+c), Tl/c, Tl/s, Tl/z, Ts/z, z/l, z/Tl Categorical 

Topsoil 

stoniness class 

Stoneless or slightly stony, moderately stony, very stony Ordinal 

Presence or 

absence of pans 

0 (pan absent), 1 (pan present) Binary 

Profile available 

water class 

Low, moderate, high Ordinal 

Figure 4. Relationship between the number of supergroups and the median number of SPGs in each supergroup, for 

each window. 
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Table 2. Number of siblings, number of SPGs, and number of supergroups within each window. 

Window No. siblings No. SPGs No. supergroups 

W1 20 18 7 

W2 15 8 4 

W3 40 23 7 

W4 7 3 2 

W5 21 14 5 

 

Table 3. Siblings of window W5 and their SPG and supergroup allocation. Siblings in bold type are the spatially dominant sibling within their supergroup. 

 
Sibling NZSC Area (ha) Drainagea Depthb Permeability Texturec Topsoil 

stoninessd 

Pan PAW SPG Supergroup 

River_1a.1 WW 12.4 w+mw s+vs rapid s vst 0 low 13 1 

Rang_41a.1 RFT 31.1 w+mw s+vs rapid s mst 0 low 14 1 

Rang_18b.2 RFT 64.4 w+mw s+vs rapid s vst 0 low 13 1 

Ashb_12a.1 WF 115.3 w+mw s+vs rapid s vst 0 low 13 1 

Cair_4a.1 EOMJ 9.7 i d slow (l+z)/c stl+sst 0 mod 11 2 

Ytoh_1a.1 PPJ 263.6 p+vp d slow (l+z)/c stl+sst 0 mod 4 2 

Timu_2a.1 PXM 9.2 i md slow (l+z)/c stl+sst 1 mod 10 3 

Kaur_2a.2 PJT 13.7 w+mw md slow l+z stl+sst 1 mod 12 3 

Timu_1a.2 PXM 94.7 i md slow l+z stl+sst 1 mod 8 3 

Kelc_1a.1 PJM 123.1 i md slow (l+z)/c stl+sst 1 mod 10 3 

Clar_1a.1 PPX 280.0 p+vp md slow l+z stl+sst 1 mod 5 3 

Timu_1a.1 PXM 543.0 i md slow l+z stl+sst 1 mod 8 3 

Lism_2a.1 BFP 11.7 w+mw s+vs moderate l+z mst 0 mod 2 4 

Eyre_1a.1 ROW 71.8 w+mw s+vs moderate l+z stl+sst 0 mod 6 4 

Raka_1a.1 RFW 90.9 w+mw s+vs moderate l+z stl+sst 0 mod 6 4 

Eyre_3a.1 ROW 92.4 w+mw s+vs moderate l+z mst 0 mod 2 4 

Raka_2a.1 RFW 136.4 w+mw s+vs moderate l+z mst 0 mod 2 4 

Waka_1a.1 PIM 7.0 i d slow l+z stl+sst 0 high 3 5 

Temp_9a.1 PIT 28.1 w+mw md slow l+z stl+sst 0 high 1 5 

Temp_2a.1 PIT 33.2 w+mw md slow l+z stl+sst 0 mod 7 5 

Fris_1a.1 PJT 185.7 w+mw d moderate l+z stl+sst 0 mod 9 5 
ap+vp: poorly or very poorly drained; i: imperfectly drained; w+mw: well or moderately well drained 
bs+vs: shallow or very shallow; md: moderately deep; d: deep 
cl+z: loam or silt; (l+z)/c: loam or silt over clay; s: sand 
dstl+sst: stoneless or slightly stony; mst: moderately stony; vst: very stony 
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In supergroups 1, 2 and 4, members varied on only one soil property; members of supergroup 

3 varied on two soil properties, and members of supergroup 5 varied on four soil properties. 

When members varied on a soil property, they almost always expressed less than the full range 

of variation in the soil property compared to the whole set of siblings in the window. Only 

members of supergroup 3 expressed the full range of variation in a single soil property (the 

three property states of soil drainage class). 

With respect to our use case, we must consider how the supergroups are represented to the end-

user. The spatially dominant sibling member of a supergroup is one candidate to represent it, 

as is the spatially dominant SPG (since several siblings may be allocated to the same SPG). 

The dominant sibling may be a better choice since it may be a more recognisable concept to 

the end-user. The dominant sibling within each supergroup in window W5 is highlighted in 

bold type in  

Table 3. 

Our climate modeller might run her model in window W5 with the five highlighted siblings 

that essentially represent well-drained very stony soils (supergroup 1), poorly drained soils 

(supergroup 2), imperfectly drained soils with a pan (supergroup 3), well-drained shallow soils 

(supergroup 4), and well-drained deep soils (supergroup 5). 

The key soil group upscaling process is a consistent method for producing generalised groups 

of soils. Members of a group are expected to share functional similarities, but not necessarily 

taxonomic similarities. Since the groups are functional groups, the soil properties that 

determine function may vary depending on the application. 

Case study 2: Water balance modelling 

The second case study illustrates the effect of upscaling soil spatial information on the output 

of a soil-water balance model. Soil-water status is an important component of crop growth 

models and may also be used to schedule irrigation or forecast drought (Woodward et al., 

2001). Soil properties are some of the key input parameters to soil-water balance models, so 

the spatial scale of the soil property information supplied to these models may affect the model 

output. This, in turn, may have implications for decision-making processes that are based on 

model predictions. We were interested in using the output of a soil-water balance model to 

examine the effect of changing the scale of soil information on predictions of crop water 

demand as an indicator of drought. 

Method 

Water balance model: We ran a daily water balance model called WATYIELD (Fahey et al., 

2010) to produce daily estimates of soil-water content (SWC) across the part of New Zealand 

that has S-map coverage, for one simulation year that ran from 1 July 2004 to 30 June 2005. 

Soil information: The key soil parameters that WATYIELD requires are a soil profile’s total 

available water (TAW) and readily available water (RAW), in millimetres. TAW is the 

difference between the SWC at field capacity and at permanent wilting point, whereas RAW 

is the difference between the SWC at field capacity and at the trigger point for crop water stress 

(Allen et al., 1998), which in New Zealand is typically the SWC at 100 kPa suction. The trigger 

point, SWCTP, is the soil-water content below which a crop can no longer extract enough water 

to sustain optimal plant growth. 

The TAW and RAW were supplied to WATYIELD as raster layers, where each cell of the 

raster contained the soil profile’s TAW or RAW value, respectively. We tested the effect of 

upscaling the soil spatial information by rasterising New Zealand’s S-map coverage at a range 
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of grid resolutions: 100 m, 1000 m, 5000 m, and 20,000 m. Each raster cell received the TAW 

and RAW of the dominant soil sibling in the cell at the given raster resolution, or a null value 

if the cell was outside the S-map coverage. 

In addition, we also created two hypothetical soil profiles: the first soil had a TAW of 150 mm 

and an RAW of 75 mm (the “nominal” soil), and the second soil had a TAW of 133 mm and 

an RAW of 53 mm (the “average” soil). The first soil is the hypothetical soil profile that NIWA 

uses in its water balance simulations, and the second soil represents the average of all soils in 

S-map. The TAW and RAW of these soils were held constant and were gridded across New 

Zealand at a 5000 m resolution. 

Climate information: The key climate parameters WATYIELD requires are precipitation, in 

millimetres, and a reference crop evapotranspiration, ET0, in millimetres. We obtained daily 

precipitation rasters and daily potential evapotranspiration rasters for the simulation year from 

NIWA (Tait et al., 2016). These data are gridded on NIWA’s VCSN grid at a spatial resolution 

of approximately 5000 m. 

Potential evapotranspiration deficit calculations: We used the simulated daily soil water 

content values from WATYIELD to estimate the daily actual evapotranspiration (AET), in 

millimetres of water, of a notional generic pasture crop. Under optimal conditions, when there 

is sufficient soil water for crop growth, the potential evapotranspiration (PET) of a crop, in 

millimetres, may be estimated as a proportion of a reference evapotranspiration: 

PETC = 𝐾C ∗  (ET0 − 𝐸CAN) 

where ET0 is the evapotranspiration, in millimetres of water, of a reference surface with a grass 

reference crop, 𝐸CAN is the evaporation, in millimetres, of free water from the reference crop 

canopy (Neitsch et al., 2011), and 𝐾C is a dimensionless crop coefficient that adjusts the 

reference evapotranspiration for a specific crop (Allen et al., 1998). We set the 𝐾C of the generic 

pasture crop to 1.0, after Allen et al. (1998). 

In reality, optimal conditions for plant growth do not always exist. WATYIELD assumes that 

the crop draws water from the soil at the same rate as the AET when the crop is not under water 

stress; however, as the soil dries, the soil water content eventually decreases to a point where 

the crop can no longer extract enough water for optimal plant growth. This point is called the 

trigger point (TP) for crop water stress, and the soil water content at this point (SWCTP), in 

millimetres, is calculated as (Allen et al., 1998): 

SWCTP = TAW − RAW 

When the SWC is less than SWCTP and the crop is under water stress, AET begins to decrease 

at a rate that is described by a dimensionless water stress coefficient, 𝐾S (Allen et al., 1998): 

𝐾S = SWC𝑖 (TAW − RAW)⁄  

Accounting for crop water stress, the AET of the crop on day i of the simulation year (𝑖 =
1, 2, … , 365) is therefore calculated as follows (Allen et al., 1998): 

AET𝑖 = {
𝐾C ∗  (ET0 − 𝐸CAN) = PETC, SWC𝑖 ≥ SWCTP

𝐾C ∗ 𝐾S ∗  (ET0 − 𝐸CAN), SWC𝑖 < SWCTP
 

Finally, the crop water demand (CWD) is the difference between a crop’s AET𝑖 and its PETC; 

in other words it is the additional amount of soil water, in millimetres, that a crop needs on day 

i in order to achieve an optimal growth rate: 

CWD𝑖 = PETC − AET𝑖 
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If CWD𝑖 > 0 mm then the crop is under water stress on day i, and indicates that the soil is in 

drought. If the daily CWD is summed over a period of time, the sum indicates the total amount 

of water the crop needed over the period in order to maintain optimal growth. 

Model runs: In total we made six runs of WATYIELD using the six sets of TAW and RAW: 

one run for each of the four S-map upscalings and for each of the two hypothetical soils. This 

generated six sets of daily SWC rasters. For each daily SWC raster, we computed CWD𝑖 using 

the method described above. Finally, we reclassified the CWD𝑖 rasters to a binary 

representation in order to depict instance of drought: in the reclassified rasters, values of 0 

indicated CWD of 0 mm (no drought); values of 1 indicated CWD greater than 0 mm (drought). 

Common grid: To properly compare the effect of upscaling the soil information, the 5000 m 

climate rasters, the 1000 m, 5000 m, and 20,000 m S-map TAW and RAW rasters, and the 

5000 m resolution hypothetical soil TAW and RAW rasters were all resampled using a 

nearestneighbour algorithm to the 100 m raster grid, and all simulations were performed on 

this common grid. Therefore the only information that varied between WATYIELD runs for 

each 100 m grid cell was the soil TAW and RAW information. 

Figure 5. Annual CWD as derived from WATYIELD output, based on TAW and RAW at a range of spatial scales 
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Results and discussion 

For each of the six WATYIELD runs we summed the daily CWD and drought rasters to 

estimate the annual CWD and area in drought. The effect of changing the scale of soil 

information on annual CWD is depicted in Figure 5 for a small area of Canterbury. It is easy 

to see the scaling effect between panels (a) and (b); the effect is obscured in panels (c) to (f) 

because the climate rasters also had a resolution of 5000 m. The climate effect explains why 

we don’t see an imprint of 20,000 m × 20,000 m blocky artefacts in panel (f). However, the 

effect of using actual soil information compared to using a single nominal or average soil is 

still evident when compared on the same scale, where the scaled S-map data in panel (c) shows 

a clear difference in CWD pattern, compared to panels (e) and (f) which used a respective 

nominal and average soil.    

The effect of spatially scaling the soil information is clearest when the results are viewed at a 

regional extent or finer, because climate is the main driver of the spatial distribution at the 

national extent. 

We were also interested in the effect of the soil information scaling on the daily predictions. 

To examine this effect, we estimated the total daily CWD and drought area for each simulation 

day by summing the daily CWD and drought incidence rasters, respectively. We did this 

separately for each of the six WATYIELD runs. We then subtracted the daily CWD and 

drought area of the simulations based on the 100 m S-map upscaling from the corresponding 

daily values of the other five WATYIELD runs. This let us examine differences in the temporal 

trend in CWD and area in drought across scales, relative to the predictions made using the 100 

m-resolution S-map TAW and RAW. Time series of the differences in drought area are plotted 

in Figure 6. 

Another method of illustrating the differences in CWD and drought area between scales is to 

plot time series of the cumulative sum of the daily total CWD and drought area estimates. The 

cumulative time series for CWD is plotted in Figure 7. 

Figure 6. Time series of the difference in the area in drought between the predictions based on the 100 m-resolution 

S-map TAW and RAW, and the predictions based on the other scales. Positive values are where the estimate at the 

other scale is larger than the estimate at the 100 m resolution and vice-versa. 
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The dominant S-map sibling changes from place to place, but can also change at a given 

location depending on the raster resolution. We observe that upscaling S-map to coarser and 

coarser scales tends to remove areas of soils with higher TAW and RAW because soils with 

lower TAW and RAW happen to be spatially dominant. For example, the mean TAW of the 

100 m S-map was 133 mm, whereas the mean TAW of the 20,000 m S-map was 113 mm. 

Climate also has a spatially variable effect, and all these effects together influence the 

behaviour of the simulated variables over time. Some areas go into drought as early as early 

July, although according to Figure 6 the total area in drought is largest during summer and 

early autumn. In the first three and a half months of the simulation year, simulations based on 

the coarsest S-map scaling typically show the greatest area of drought on any given day; this 

relationship holds until about the start of October, after which they frequently show the smallest 

daily area of drought. 

What causes these relationships? As we observed above, the coarser S-map upscalings tend to 

have more soils with lower TAW and RAW. As evapotranspiration occurs, their SWC 

decreases and their trigger points are reached sooner than in the soils with higher TAW and 

RAW that are more common in the finer S-map upscalings. Later in the simulation year SWC 

has decreased to the point that even many of the higher TAW and RAW soils in the finer 

upscalings are in drought. Precipitation leads to an increase in the SWC, which is often enough 

to bring many of the lower TAW/RAW soils out of drought, but is often insufficient to raise 

the water content of the higher TAW/RAW soils above their trigger points. 

These relationships also help to explain why areas of average and nominal soils do not begin 

to go into drought until August: they initially hold more water than many of the S-map soils. 

Drought takes longer to accumulate in simulations based on the nominal soil than in 

simulations based on the average soil because the nominal soil has a larger RAW and a lower 

SWCTP. Simulations based on the nominal soil underestimate the annual accumulated CWD 

compared to simulations based on S-map and the average soil for the same reason (Figure 7). 

It is interesting that while there are differences in the area in drought from day to day between 

the simulations based on the four S-map upscalings, Figure 7 indicates that the annual 

accumulated CWD (i.e. the cumulative value at 30 June 2005, the final day of the simulation 

Figure 7. Cumulative sum of CWD for simulations based on each set of soil maps. For each simulation, the daily value 

that is accumulated is the sum of the day’s CWD raster. 
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year) varies relatively little between these simulations, compared to simulations based on the 

average and nominal soils. There is some variance, but the curves for the simulations based on 

the S-map upscalings essentially overlap at the end of the simulation year. The largest annual 

CWD was 3.2 × 109 mm and was based on the simulation that used the 100 m S-map. 

The results suggest that the use of spatially variable soil information in water balance models 

leads to more realistic summary estimates of drought indicators compared to model estimates 

based on spatially constant soil information, which underestimated annual summaries of CWD. 

This is clear in Figures 6 and 7 where the simulations at 5000 m resolution based on a single 

nominal or average soil produced quite different CWD to that based on scaling of S-map data. 

Within the group of simulations that were based on the S-map upscalings, the degree of 

upscaling made a relatively small difference to annual summaries of predictions. 

The degree of upscaling is more important in applications that require spatial estimates of the 

drought indicators, because coarser upscalings convey less spatial information. For national- 

and some regional-extent applications, a fairly coarse upscaling, such as our 20,000 m 

resolution upscaling, may be adequate. That is to say, the level of spatial information lost at 

this scale, relative to the original S-map, may be acceptable given the intended use of the 

predictions—such as to ease a visualisation or computational burden. On the other hand for 

other regional- and finer-extent applications, a finer upscaling may be appropriate. 

The effect of upscaling methods depends a lot on the nature of the spatial variation of the soil 

and the linearity or otherwise of the model that is using the soil information. For example, if 

soil variation followed a pattern where the dominant soil was generally a deep soil and the 

secondary soils were generally shallow, then CWD would be underestimated. The effect might 

be exacerbated if the model is strongly non-linear. If, however, the spatial pattern alternated 

between shallow and deep soils being dominant, then the effect of upscaling is likely to be 

small. Model non-linearity would only be important if soils with a non-linear response were 

not well represented after the spatial upscaling operation. 

Conclusion 

Upscaled soil information can ease a computational or visualisation burden. The 

appropriateness of upscaled soil data produced by a given method will depend on one’s 

purpose. For some regional or national questions, relatively coarse data may be fit for purpose. 

Other questions will require more detailed data. The fitness for purpose of a given scale of soil 

information for a specific purpose should always be tested. 
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