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Abstract 

If decisions are made without adequate acknowledgment of uncertainty, the chance of 

undesirable outcomes are either understated or overlooked.  There has been increasing 

recognition that uncertainty in deterministic model results needs to be systematically 

considered and this includes understanding the environment in which the model operates, and 

that the sources of uncertainty and the reasons for the uncertainty are identified. We present a 

system for quantitative uncertainty evaluation (UE) that facilitates exploration of how the 

components of a model contribute together to the overall model output uncertainty. A key 

aspect is a structure that classifies the types of uncertainty that can be introduced by each model 

component. A systematic sequence of tasks is used to carry out a case-study. This formal 

structure and systematic sequence for quantitative uncertainty evaluation provides a common 

language for what a UE encompasses, and a starting point for carrying out such an evaluation. 

Identifying and discussing components of uncertainty provide an opportunity to target 

resources to reduce the overall size of uncertainty. 

Introduction 

Biophysical agricultural models are used to inform and support farm-level decision making, 

agronomic research, breeding strategies, and government policy (Rosenzweig, Jones et al. 

2013). Colloquially known as crop models, they are simplified mathematical representations 

of physiological and physical processes that occur in plants (e.g. leaf appearance rates) and 

soils (e.g. mineralization of N) in response to environmental (e.g. temperature and rainfall) and 

management (e.g. sowing dates and irrigation) drivers. Crop models can be integrated into 

wider decision making tools such as catchment tools or applied to areas of food security and 

climate change impact and adaptation assessments (Boote, Jones et al. 1996, Sinclair and 

Seligman 2000, Jamieson, Brooking et al. 2007, Cooper, van Eeuwijk et al. 2009, Hochman, 

Van Rees et al. 2009, Bezlepkina, Adenäeur et al. 2010, Teixeira, Fischer et al. 2013, 

Holzworth, Huth et al. 2014). 

These models have multiple forms of uncertainty that are inherent in the way that they are built, 

how they run and how they are used. There has been increasing recognition that: 

1. The impact of uncertainty on deterministic model results needs to be systematically 

considered to ensure outcomes derived from model estimates can be achieved, 

2. An assessment of uncertainty in its widest sense also means understanding the  
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environment in which the model operates, and  

3. The sources of uncertainty AND the reasons for the uncertainty need to be 

identified.  

(Refsgaard, Henriksen et al. 2005, McFarland 2008, Guillaume 2011, Wallach, Makowski et 

al. 2014, Meenken, Triggs et al. 2015, Uusitalo, Lehikoinen et al. 2015) 

When uncertainty in a deterministic model is discussed, uncertainty is often due to both 

quantitative and qualitative sources. The focus of this paper is on quantitative uncertainty 

evaluation. For a discussion of some other types of uncertainties to consider see (Espig, Finlay-

Smits et al. 2020, Wheeler, Meenken et al. 2020). Quantifiable uncertainties include1:  

1. Input parameter uncertainty (e.g. soil type, nitrogen amount, etc.),  

2. data uncertainty (e.g. weather data) (Sharifi, Meenken et al. 2020),  

3. scaling/aggregation uncertainty (model used at a scale it was not calibrated for),  

4. structural uncertainty (e.g. deliberate simplification or incomplete understanding 

of real world processes),  

5. epistemic uncertainty (intrinsic, random variation of a real-world process even 

when the conditions are fully specified), 

6. unknown unknowns, 

 (e.g. (O'Hagan, Kennedy et al. 1999, Kennedy and O'Hagan 2001, Katz 2002, Spiegelhalter 

and Best 2002, O'Hagan 2006, Cressie and Wikle 2011, Gupta, Clark et al. 2012). 

The development of methods to quantify uncertainty in deterministic models is an active area 

of research and many tools are in common use including statistical objective functions, multi-

model ensembles, sensitivity analysis and emulators (Saltelli, Chan et al. 2000, Gauch, Hwang 

et al. 2003, O'Hagan 2006, Asseng, Ewert et al. 2013, Wallach, Makowski et al. 2014, Teixeira, 

Brown et al. 2015). Which techniques will provide most insightful will vary depending on the 

objectives and specific properties of the model, and there is no single technique that can fully 

quantify all these types of uncertainties. In most situations, a selection of techniques will likely 

be helpful and should be combined to provide a heuristic view of the model, and even simply 

describing these uncertainties can provide a more complete picture of the information the 

model provides to decision makers. To make UE cleaner and easier to achieve, in this paper 

we outline a UE framework that carefully and systematically builds up information, objectives 

and analyses.   

Definitions of model components 

We identified five key components in a deterministic model. These were: 

State equations 𝑍 which define the processes that make up the model, representing either 

experimentally derived relationships or theoretical constructs. State equations are mathematical 

equations that describe the underlying scientific processes of the model. Although the 

coefficients of these equations may have been derived via a calibration process during the 

model building phase (O'Hagan 2006), these coefficients and the equations to which they relate 

are distinct from the input parameters as they are usually constant for all scenarios under which 

                                                 
1 Some qualitative sources of uncertainty include bug fixes, improved methodologies, the 

addition of new features; when the model is a ‘black box’  (e.g. when model is not fully 

disclosed); user error (e.g. inaccurate input information) and when the model doesn’t reflect 

the way users such as farmers see their system. 

 



 

 

the model might be expected to simulate crop responses. For example, the thermal-time 

calculation used to drive phenological development of lucerne (Teixeira, Moot et al. 2009) or 

the vernalisation requirement for wheat (Brooking 1996).  

Independent input information to the model that does not change during the development of 

the crop is denoted as θ. Examples of input parameters in an agricultural setting could be soil 

type, cultivar or other ‘scenario’ indicators as considered by Teixeira, Brown et al. (2015) and 

Holzkämper and Klein et al. (2015). These are typically the inputs a user can manipulate. 

Time varying environmental or managerial inputs such as temperature, rainfall and/or irrigation 

are represented by 𝐸𝑡. This may link to database information that is accessed as directed by the 

user. 

Response or calibration data, possibly for multiple variables and/or scenarios, is denoted (𝐶𝑡). 

This represents the situation when data is available that can be used to directy assess simulated 

outputs. This could be available only as a single vector outcome (e.g. yield at the end of the 

simulation process for a selection of scenarios) or the outcome from a single scenario. 𝐶𝑡 is 

distinct from data used during the model building phase to construct the 𝑍. It can be thought of 

as test data or independent validation data. In the case study below, 𝐶𝑡 acts within the modelling 

process itself upon the estimated real, unknown target quantity rt, for example during data 

assimilation (Gordon, Salmond et al. 1993, Thacker and Lacey 1996, Lewis, Lakshmivarahan 

et al. 2006, Bulygina and Gupta 2009, Candy 2009, Cressie and Wikle 2011). Note that data 

used to describe mechanisms and validate the model are also present in the framework via their 

contribution toward 𝑍. 

Residual variation (ε) between the prediction and the real world that remains once the model 

and data have been considered. This can include both aleatory uncertainty and the unknown 

unknowns. 

Thus the real world (r) at time (t) is represented by the model f(•) which has the above 

components2, such that: 

           𝑟𝑡 = 𝑓((𝑔(𝑍, 𝜃, 𝐸𝑡), 𝐶𝑡)𝜀)                                                        (1) 

Each of these components have an uncertainty associated with them. This model can be 

implemented using a Bayesian approach to estimate target measures (discussed below). In 

order to carry out most UE tasks this full implementation to Bayesian modelling is not needed, 

but this framing of the problem is invaluable when considering what could/should be 

considered, and how the tasks relate to each other, the model and the other available resources.  

Case-study 

The Wheat Development Model SIRIUS. 

The crop model SIRIUS (Brooking, Jamieson et al. 1995, Jamieson, Brooking et al. 1995, 

Jamieson, Brooking et al. 1995, Brooking 1996, Jamieson, Brooking et al. 1996, Jamieson, 

Semenov et al. 1998a, Jamieson, Brooking et al. 1998b) is summarised by He, Le Gouis et al. 

(2012). SIRIUS is a dynamic, deterministic computer simulation model for representing the 

phenological development of a wheat plant through time as realised by the number of fully 

extended leaves. It has a discrete nature such that on each day there is a well-defined set of 

states by which each state variable may either remain in its current state or update according to 

environmental cues.  The sub-model used in this example applies only to spring wheat. State 

equations Z are used to predict the (observable) state variable leaf number (lnt) on day t based 
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on calculations that simulate the rate of leaf appearance (phyllochront), number of organs 

(primordiat) and the possible final number of leaves given daylength and developmental 

progress (flntt, flnt). t = 1 is the day the grain is sown, as this is the stage at which its apical 

meristem germinates and becomes sensitive to temperature. SIRIUS simulates the plant’s 

development based on mean daily environmental information. The simulations depend on input 

parameters θ that describe cultivar specific characteristics and responses to environmental 

signals, and observable environmental information 𝐸𝑡 where TT = mean daily thermal time and 

PP = daily photoperiod. He, Le Gouis et al. (2012) describe how, for spring wheat, the state 

equations, environmental data and input parameters simulate the effects of thermal time and 

photoperiod to express vegetative development. The state equations (5) – (9) are  

 1 1min( , )t
t t t

t

TT
ln fln ln

phyllochron
     (2) 

 𝑝ℎ𝑦𝑙𝑙𝑜𝑐ℎ𝑟𝑜𝑛𝑡 = 𝑏 ∗ 𝑏𝑝  (3) 

where b = {

0.75 𝑖𝑓 𝑙𝑛𝑡 ≤ 2   
1  𝑖𝑓 𝑙𝑛𝑡 > 2 ≤ 8
1.3 𝑖𝑓 𝑙𝑛𝑡   >  8  

 ,and bp is a cultivar specific value for baseline phyllochron (the 

rate of leaf development at 2–8 leaves). 

 t tflnt = lmin+(ps*(ppsat - PP )* s)   (4) 

where s = {
1 𝑖𝑓 𝑃𝑃𝑡  ≤ 𝑝𝑝𝑠𝑎𝑡

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     
and ps and ppsat are cultivar specific values for rate of 

development in response to photoperiod the photoperiod at which full response occurs. 

 *t tprimordia pe pn ln    (5) 

where pe is the number of primordia in the seed at sowing and pn is the number of primordia 

present in the meristem on per leaf basis.  
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where each state variable excepting lnt is treated as an unobservable latent variable throughout 

the day to day simulation of the wheat plant development. At the completion of the vegetative 

development phase, the state variable flnt is observable once the onset of spikelets is seen.  

UE sequence of tasks  

A simple UE was developed using a sequence of tasks to provide uniform information about 

deterministic model uncertainty2.  This may be beneficial to modellers as well as users of 

models who seek to understand the source of uncertainty. Tasks may be carried out in a 

sequence as described next, with some analysis details and figures below: 

1. State objectives: The objective is to provide robust, data-driven credible intervals.  This 

could be achieved by fitting a Bayesian data assimilation model to explore not only 

whether the model ends up with accurate estimates of flag leaf date, but also whether it 

correctly simulates the development of each leaf through time. This should help provide 

prediction and credible intervals that use multiple sources of information including the 

model, expert opinion and data. The model is visualised in Figure 2. 



 

 

2. Identify model components: Table 1 summarises the state variables, input parameters, 

and observed variables in SIRIUS as described above.  It also acknowledges the 

presence of aleatory uncertainty.  

3. Curate available information: Data, expert opinion, and other quantitative and 

qualitative information can both inform and describe how each model component may 

introduce uncertainty to model simulations (Table 2).  If no information is available 

this is immediately clear.  

4. Confirm/redefine objectives:  With the current data and a Bayesian data assimilation 

model we should be able to achieve the objective. 

5. Generate and analyse data: A brief outline of the analysis is discussed below. 

6. Visualise and communicate results: See Figure 3 and discussion next. 

 

Figure 1: Visualisation of Bayesian Model for SIRIUS 

  



 

 

Table 1: Model components and types and sources of uncertainty for SIRIUS3  

 

Table 2: Component specific information 

 

 

 

                                                 
 
3 Note the use of italics for all parameters and variables, the use of lower case for state variables and input 

parameters, and the use of upper case for observed variables. 

Calibration Data
Environmental/

Management Data
Model Form State Equation

θ C t E t g() Z t ε

ps LNt PPt phyllochron t inherent randomness

ppsat TTt primordia t unknown unknowns

lmin flnt t

pn fln t

pe ln t

bp

relationship between 

inputs, e.g. could be 

visualised by a 

model wiring 

diagram.

Remaining variation

Observed Data Structural 

Input Parameter

Model 
Component 

How uncertainty might be 
introduced  

How uncertainty might be 
evaluated 

Quantitative and Qualitative Information 

State-space 
identification 

Data Expert Opinion 

Appropriate 
values for input 
parameters 

 This information can be used in 
sensitivity analysis to assess 
potential model outcomes and 
the sensitivity of the model to 
changes in cultivar due to base 
phyllochron (bp). 

𝑟 = 𝑓(𝑍𝑡 , 𝜽, 𝐸𝑡 , 𝐶𝑡 , 𝜀)  There is expert 
opinion regarding 
the correct value 
of bp for different 
cultivars, ranging 
from 90-110. 

Measured data 
with which to 
update or assess 
model 
simulations 

Scaling, aggregation, bias, 
sampling and other types 
of measurement 
uncertainty. Aleatory 
uncertainty may or may 
not be able to be 
differentiated from 
measurement 
uncertainty.  

Calibration, validation, 
verification and data assimilation 
can provide information around 
how well the simulated data 
reflects the measured data.  
Measurement error and aleatory 
uncertainty tied up in statistics 
such as rmse’s, standard errors 
or credible intervals. 
  

𝑟 = 𝑓(𝑍𝑡 , 𝜃, 𝐸𝑡 , 𝑪𝒕, 𝜺) Measured 
observations of 
flag in Southland 
crops for one 
cultivar are 
available. 

 

Measured data 
with which to 
update or assess 
model 
simulations 

Same as above Same as above but information is 
available through time rather 
than at a single point. 

𝑟 = 𝑓(𝑍𝑡 , 𝜃, 𝐸𝑡 , 𝑪𝒕, 𝜀) Measured 
observations of LN 
at weekly intervals 
under climate 
controlled 
conditions are 
available 

 

Real world 
environmental 
data indicating 
appropriate 
values for model 
input 
information. 

Sensor uncertainty such 
as bias or precision 
problems, distance from 
weather station to crop, 
aggregation. 

Sensitivity analysis.  𝑟 = 𝑓(𝑍𝑡 , 𝜃, 𝑬𝒕, 𝐶𝑡 , 𝜀) Weather station 
data in Lincoln, 
Canterbury, New 
Zealand from 
1950-present are 
available 
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Figure 2: Process model predictions (bold dashed line), data (light dotted lines) and hybrid (bold solid line) predictions. X-

axis = day, y axis = leaf number. 

A Bayesian hierarchical model (Gelman, Carlin et al. 2006, Candy 2009, Cressie and Wikle 

2011) was used to combine incoming data with the process model SIRIUS4. The model and 

fitted results are visualised in Figures 2 and 3. This approach allows expert opinion (e.g. about 

the input parameters shown in Table 1), and subject observations, to be integrated to determine 

the uncertainty in deterministic model predictions throughout the duration of their simulations.  

This allows a probabilistic description of inputs and model structures to explore model 

sensitivity. It gives users and decision makers real time predictions that are a combination of 

up-to-date information and an underlying process understanding. The results indicate that as 

the leaf number increases so too does the confidence in the estimate. Referring back to the 

state-space model component formulation in eq.8., we can see that we have a better 

understanding of how calibration data Ct relates to the model (i.e. observed leaf count closely 

follows the simulated leaf count, however, it is not a perfect match). This also provides insights 

to intrinsic, random variation ε.  In order to build a more complete uncertainty evaluation more 

work is required to describe uncertainties that relate to model structure, input parameters, and 

environmental data.  Possible objectives include: 

1. Structural uncertainty 𝑟𝑡 = 𝑓((𝑔(𝒁𝒕, 𝜃, 𝐸𝑡), 𝐶𝑡), 𝜀): Assess the size and direction of bias 

of model simulated values for fln by collecting new calibration data for a new location, 

potentially to guide new research/calibration efforts, 

2. Input parameter uncertainty 𝑟𝑡 = 𝑓((𝑔(𝑍𝑡 , 𝜽, 𝐸𝑡), 𝐶𝑡), 𝜀): carry out a sensitivity 

analysis to assess whether the model is also sensitive to changes in bp, or carry out a 

sensitivity analysis to assess whether the model is not sensitive to changes in pe, 

3. Environmental input data uncertainty 𝑟𝑡 = 𝑓((𝑔(𝑍𝑡, 𝜃, 𝑬𝒕), 𝐶𝑡), 𝜀): Carry out a 

sensitivity analysis to assess the impact (in number of days of error in day of flag leaf 

estimation) of spatial bias in thermal time (TT) input data. 

A range of analysis and sampling techniques that are useful to achieve the above are not 

reviewed in this paper but can be found in e.g. (Saltelli, Chan et al. 2000, Wallach, Makowski 

et al. 2014, Douglas-Smith, Iwanaga et al. 2020). 
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Summary 

By explicitly describing a structure that encompasses model components and how they 

contribute uncertainty to model outputs, and systematically working through a defined 

sequence of tasks to describe and quantify that uncertainty we have achieved at least five 

important outcomes.  Firstly, if the model had formerly not been fully disclosed, the model is 

no longer a black box since the model structure has been explicitly described. Second, each 

model component has been equally considered as a potential focus for uncertainty evaluation 

from the outset.  Third, the model has been subjected to a formal process to help demonstrate 

both that it is trustworthy and that it is, to some degree, fit for purpose. Fourth, formal UE 

activities can provide a natural platform to curate and compile many types of information and 

data, including expert knowledge. This would provide an improved platform for decision and 

policy makers to assess model outputs and their implication, resulting in improved decision 

making. Fifth, fitting the process model with data via a Bayesian model formally grounds the 

uncertainty modelling technique used in statistical theory. Although the full extension of the 

formalisation will not always be necessary, it is there underlying the UE framework proposed 

here.  

In this paper we have proposed a systematic approach in understanding and determining and 

communicating uncertainty from multiple sources in deterministic model, that enables 

improved identification of sources and the reasons for uncertainty. This provides an 

opportunity to target resources to reduce the overall size of uncertainty, for example, through 

better data acquisition or remodelling specific parts of the model.  
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