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We consider a ring network of quadratic integrate-and-fire neurons with nonlocal synaptic and
gap junction coupling. The corresponding neural field model supports solutions such as standing
and travelling waves, and also lurching waves. We show that many of these solutions satisfy self-
consistency equations which can be used to follow them as parameters are varied. We perform
numerical bifurcation analysis of the neural field model, concentrating on the effects of varying gap
junction coupling strength. Our methods are generally applicable to a wide variety of networks of
quadratic integrate-and-fire neurons.

I. INTRODUCTION

The collective behaviour of spatially extended networks of neurons is a topic of ongoing interest [48–53]. While it
is possible to simulate large networks of model neurons [54, 55], continuum level descriptions (neural field models)
often provide more potential for mathematical analysis. Early neural field models were phenomenological [56–59] but
more recently models derived rigorously from infinite networks of spiking neurons have become available [60–66].

One type of solution of a neural field model is a “bump” — a spatially localised group of active neurons. Such
solutions are thought to be relevant to working memory [67] and the head direction system [68, 69]. Also important are
travelling waves [70–73]. These are thought to be relevant for modelling epilepsy and migraines, see for example [74].
We are often interested in when and how such solutions lose stability or are destroyed in bifurcations, and what
patterns are stable beyond such bifurcations. For example, a bump may start to “breathe” [75] or a travelling wave
may no longer have a fixed profile.

In this paper we study a ring network of quadratic integrate-and-fire (QIF) neurons coupled both synaptically and
via gap junctions. We analyse the continuum network, whose dynamics are described by a neural field model. In
similar previous work we considered networks of theta neurons with just synaptic coupling, concentrating on only
time-periodic solutions [63]. (The QIF neuron with infinite threshold and reset is equivalent to a theta neuron [76].)
In earlier work we also studied the stationary states of a ring network of synaptically coupled theta neurons [61].
On the other hand, models similar (but not identical) to ours have been the focus of other reasearchers. Byrne
et al. studied networks of QIF neurons with both synaptic and gap junction coupling, but their synaptic coupling
incorporated propagation delays and the gap junction coupling was purely local [52]. Their neural field model was
only valid in the long wavelength limit. Schmidt and Avitabile considered a ring network of QIF neurons with nonlocal
synaptic coupling and analysed both steady states and time dependent solutions which arose as the result of periodic
forcing [65]. Esnaola-Acebes et al. studied a similar model, focussing on the decaying oscillatory modes that such
models show [64]. Byrne et al. also considered a ring network of QIF neurons with synaptic coupling, performing a
largely numerical study of some of the possible types of solutions [66].

Our model is probably most similar to that of [52], but one of our contributions is to show that some solutions of
interest can be analysed using a self-consistency approach that has previously been used only for networks of theta
neurons or Kuramoto and Winfree oscillators [63, 77, 78]. The structure of the paper is as follows. In Sec. II we
present the model and describe the types of patterns typically seen when numerically solving it. In Sec. III we choose
two values of the synaptic coupling strength and vary the strength of the gap junction coupling, observing transitions
between various types of solutions. In Sec. IV we present analytical methods which can be used to describe most
of the solutions observed in Sec. III. Section V shows the results of implementing the methods described in Sec. IV
and includes a discussion of the relative efficiencies of several alternative methods. We conclude in Sec. VI, and the
Appendix contains a number of useful results about the solutions of the complex Riccati equation.
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II. MODEL AND TYPES OF SOLUTIONS

Let us consider a spatially extended network of N quadratic integrate-and-fire (QIF) neurons with both gap-junction
and pulsatile synaptic coupling:

dVj

dt
= ηj + V 2

j + κvℓ

N∑
k=1

Wv (|j − k|ℓ) (Vk − Vj) + κsℓ

N∑
k=1

∑
m∈Z

Ws (|j − k|ℓ) δ (t− Tm
k ) . (1)

Here, the spiking events of the jth neuron Tm
j are determined by the reset condition: if Vj → +∞ for t ↗ Tm

j , then
Vj → −∞ for t ↘ Tm

j .
We assume that the network is organized as a one-dimensional array with periodic boundary conditions and distance-

dependent connectivity defined by coupling functions Wv and Ws. The neurons differ from each other only in the
excitability parameters ηj , which are chosen randomly and independently from a Lorentzian distribution

g(η) =
1

π

γ

(η − η0)
2 + γ2 with η0 ∈ R and γ > 0.

The coupling functions Wv and Ws are assumed to be even, continuous and periodic

Wv ((k +N)ℓ) = Wv (kℓ) , Ws ((k +N)ℓ) = Ws (kℓ) ,

and the intensity of interactions between neurons is controlled by two scalar coupling strengths κv and κs. Moreover,
for the sake of simplicity of the analytical consideration below, it is convenient to assume ℓ = 2π/N . In this case,
functions Wv(x) and Ws(x) are 2π-periodic and can be represented in the form of Fourier series

Wv(x) =

∞∑
m=−∞

Ŵv,meimx and Ws(x) =

∞∑
m=−∞

Ŵs,meimx

with coefficients

Ŵv,m =
1

2π

∫ π

−π

Wv(x)e
−imxdx and Ŵs,m =

1

2π

∫ π

−π

Ws(x)e
−imxdx. (2)

Note that for even functions Wv(x) and Ws(x), the coefficients Ŵv,m and Ŵs,m are real and therefore

Ŵv,m =
1

2π

∫ π

−π

Wv(x) cos(mx)dx and Ŵs,m =
1

2π

∫ π

−π

Ws(x) cos(mx)dx.

It is well-known [52, 60, 76, 79, 80] that in the continuum limit N → ∞, the long-term dynamics of system (1) can
be described by a neural field equation

∂u

∂t
= γ − κvu+ i

[
η0 + κvKvIm (u) +

κs

π
KsRe (u)− u2

]
(3)

for a complex-valued function u = u(x, t), where Kv and Ks denote two integral operators

(Kvφ)(x) =

∫ 2π

0

Wv(x− y)φ(y)dy and (Ksφ)(x) =

∫ 2π

0

Ws(x− y)φ(y)dy.

Note that the real and imaginary parts of the solution u(x, t) can be related to the local firing rate

R(x, t) =
1

π
Re u(x, t) (4)

and the local mean field potential

V (x, t) = Im u(x, t). (5)

Due to this interpretation, only those solutions that satisfy Re (u) ≥ 0 are physically meaningful. Moreover, it can
be explicitly shown that the property Re (u) ≥ 0 is preserved by the dynamics of Eq. (3). Therefore, we focus on this
invariant set below.
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Note also that the mapping

z(x, t) =
1− u

1 + u
, (6)

where overline denotes the complex conjugate, transforms the function u into an analog of the Kuramoto local order
parameter, z; the dynamics can be written equally-well in terms of z [52, 60].

In the examples below, we choose Wv(x) in the form of a Gaussian function

Wv(x) =
1√
2πσ

e−x2/(2σ2) with σ = 0.1, (7)

and Ws(x) in the form of a Mexican-hat function which is positive for small |x| and negative for larger |x|:

Ws(x) =
1√
2πσ1

e−x2/(2σ2
1) − 1√

2πσ2

e−x2/(2σ2
2) with σ1 = 0.5, σ2 = 1. (8)

More precisely, the above functions determine the coupling only for |x| ≤ π, while we use their 2π-periodic extensions
for other values of x. Note that the width of the gap junction coupling kernel, Wv, is much smaller than that of the
synaptic coupling kernel, Ws, since gap junctional coupling is typically more localised than synaptic coupling [60].

In numerical simulations for the spatially discretized version of Eq. (3), we usually encountered the following five
types of stable states:

1. Uniform states, i.e. constant solutions of Eq. (3) that do not depend on either x or t.

2. Stationary states, i.e. time-independent solutions of the form u = a(x) for some 2π-periodic function a.

3. Traveling waves, i.e. solutions of the form u = a(x−st), which are stationary in a frame moving with a constant
speed s ̸= 0.

4. Standing waves, i.e. solutions u = a(x, t) satisfying the periodicity condition a(x, t + T ) = a(x, t) with some
T > 0.

5. Lurching waves, i.e. solutions u = a(x, t) satisfying the shifted periodicity condition a(x + χ, t + T ) = a(x, t)
with some χ ̸= 0 and T > 0. Such waves have been found previously in neural models [81–86].

In this paper we analyse all of these types of solutions using a mixture of numerical and analytical methods. In
Sec. III we show examples of these types of solution and characterise some aspects of them as the parameter κv

(the strength of gap junction coupling) is varied. We choose to vary this parameter as the influence of gap junction
coupling in neural field models has only recently been considered [60, 79, 80]. In Sec. IV we undertake bifurcation
analysis of the various types of solution, sometimes describing them using a recently presented method that can be
used to efficiently characterise solutions using self-consistency arguments [63, 77, 78, 87].

III. PHENOMENOLOGY

To determine the typical attractors of the neural field equation (3), we discretized it on a uniform spatial grid of
1024 nodes and performed numerical simulations for various parameters κs and κv. Other parameters were chosen
as η0 = 1 and γ = 0.5, by analogy with a similar model considered by Byrne et al. in [52]. Our observations are
summarized below, where we provide a comprehensive overview of two representative cases κs = 10 and κs = 20.

A. Case κs = 10

Choosing η0 = 1, γ = 0.5, κs = 10 and κv = 1 and running the numerical simulations for Eq. (3) with various
initial conditions, we found two coexisting spatio-temporal patterns; see Fig. 1. One of them had the appearance of
a periodically oscillating standing wave, while the other had the appearance of a travelling wave, although the wave
does not travel with a constant profile. Note that standing and travelling waves have been observed in several other
neural field models [52, 63, 66].

Next, by adiabatically changing the coupling strength κv, we investigated the stability intervals of these patterns.
(When moving from one value of κv to the next, we added a small random perturbation to the final state to give the
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FIG. 1. (a) A standing wave solution of Eq. (3) and (b) a coexisting travelling wave solution. For both states, the local firing
rate R, calculated by formula (4), is shown. Parameters: κs = 10, κv = 1, η0 = 1 and γ = 0.5.

new initial state.) To this end, for each value of κv, we calculated a trajectory of length 1000 time units, discarding the
previous transient of the same length. To characterize the dynamics of the obtained trajectory, we used the spatially
averaged firing rate

⟨R(t)⟩ = 1

2π

∫ 2π

0

R(x, t)dx =
1

2π2

∫ 2π

0

Re u(x, t)dx

and its time variation

∆R = max
t

⟨R(t)⟩ −min
t
⟨R(t)⟩.

where t runs over the length of the simulation. In the case ∆R > 0, i.e. when ⟨R(t)⟩ is non-constant, we used the
plot of ⟨R(t)⟩ to calculate the time intervals ∆t between consecutive local maxima of this function. The resulting
dependences of ∆R and ∆t on κv are shown in Fig. 2. Moreover, for every time-periodic solution of Eq. (3), we also
show its least period T , which was calculated by averaging the time intervals between the consecutive local maxima
of Reu(0, t). (Note that for travelling waves we needed to double the above value, since Reu(0, t) attains two maxima
during the period. Moreover, for travelling waves with κv > 0.964 we also took into account that additional local
maxima with Re u(0, t) < 1.5 occur between the primary local maxima of Re u(0, t).)

The diagrams in the left column of Fig. 2 indicate the existence of two types of standing waves: the waves with
a single maximal value of ⟨R(t)⟩ and the waves with two alternating maximal values of ⟨R(t)⟩. Typical examples of
these patterns are shown in Fig. 3.

The diagrams in the right column of Fig. 2 have a more complicated structure. There, we can distinguish four
different types of travelling waves, see Fig. 4. The left-most values of κv correspond to a wave that moves rigidly
(notice ∆R = 0) with a constant speed (Fig. 4(a)). For a larger value of κv, we found a wave propagating with a
non-constant profile, which slowly drifts (Fig. 4(b)). This is a lurching wave. For a still larger value of κv the lurching
wave undergoes some form of quasiperiodic modulation (Fig. 4(c)). Finally, for the right-most values of κv, we observe
a wave moving above a turbulent background (Fig. 4(d)).

B. Case κs = 20

Keeping η0 = 1, γ = 0.5 and setting κs = 20 we obtain several new types of solution for different values of κv; see
Fig. 5. We see “two-bump” stationary solutions, Fig. 5(a), for which there are two disjoint regions where neurons
are firing at a significant rate [57, 88]. We also see standing waves (or “breathing” two-bump solutions, similar to
those seen in [60, 65, 66]), Fig. 5(b), more complex standing wave solutions, Fig. 5(c), lurching waves, Fig. 5(d),
and waves that travel but are not periodic in a uniformly-travelling coordinate frame, Fig. 5(e,f). Quasi-statically
sweeping through κv we obtain Fig. 6.

In the rest of the paper we analyse the types of solution shown, and provide a more rigorous explanation for the
results observed above.

IV. ANALYTICAL METHODS

The kaleidoscopic set of spatiotemporal patterns found in Eq. (3) for various system parameters can be logically
explained by a bifurcation analysis of this equation, focusing on its equilibrium and periodic solutions. We describe
two ways to do this. Our first approach relies on a discretized version of the integro-differential equation (3) and uses a



5

FIG. 2. Parameter sweeps of standing wave (left column) and travelling wave (right column) solutions of Eq. (3). Three rows
show the time variation of spatially averaged firing rate ∆R, the time intervals ∆t between the consecutive local maxima in
the plot of ⟨R(t)⟩, and the least period T . Other parameters: η0 = 1, γ = 0.5 and κs = 10.

FIG. 3. Two types of standing wave solutions of Eq. (3) for κv = 0.96 (a) and κv = 0.99 (b). Other parameters: η0 = 1,
γ = 0.5 and κs = 10.

standard implementation in Matlab of pseudo-arclength continuation for the bifurcation analysis of finite-dimensional
dynamical systems [89]. In the second approach, we derive a set of integral self-consistency equations for different
types of solutions of Eq. (3) and carry out their finite-dimensional reduction by Galerkin method.
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FIG. 4. Four types of travelling waves in Eq. (3) for κv = 0.96 (a), κv = 1.02 (b), κv = 1.04 (c) and κv = 1.07 (d). Other
parameters: η0 = 1, γ = 0.5 and κs = 10.

A. Uniform states

We start with the simplest form of solution, a uniform state. Recall that these are constant solutions of Eq. (3),
which do not depend on either x or t. On the other hand, these states will not be steady states of system (1), as
that describes a finite network of heterogeneous spiking neurons. However, in system (1), such a state would have no
macroscopic spatial structure nor significant temporal variations.

1. Existence

Each uniform state of Eq. (3) corresponds to a solution u ∈ C of the equation

γ − κvu+ i
[
η0 + κvKvIm (u) +

κs

π
KsRe (u)− u2

]
= 0. (9)

In the next proposition, we show that all physically meaningful solutions of Eq. (9) lie on a certain one-parameter
manifold.

Proposition 1 All constant solutions of Eq. (9) satisfying Re (u) ≥ 0 lie on the manifold defined by formulas

u =
1

2
f−(F, κv, γ) +

i

2
(κv − f+(F, κv, γ)) , (10)

η0 = F − πκvŴv,0 (κv − f+(F, κv, γ))− κsŴs,0f−(F, κv, γ), (11)

where

f±(F, κv, γ) =

√√
(κ2

v − 4F )2 + 16γ2 ± (κ2
v − 4F )

2
,

the coefficients Ŵv,0 and Ŵs,0 are defined by the formula (2) with m = 0, and F ∈ R is a free parameter.
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FIG. 5. Six types of solutions of Eq. (3) for κv = 0.8 (a), κv = 1 (b), κv = 1.3 (c), κv = 1.6 (d), κv = 1.65 (e) and κv = 1.8
(f). Other parameters: η0 = 1, γ = 0.5 and κs = 20.

Proof: Let us rewrite Eq. (9) in the form

γ + iF − κvu− iu2 = 0, (12)

where

F = η0 + κvKvIm (u) +
κs

π
KsRe (u). (13)

For a given F , Eq. (12) has one and only one solution satisfying Re (u) ≥ 0, see Proposition 3. It is determined by
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FIG. 6. A parameter sweep for patterned solutions shown in Fig. 5. The panels (a) and (b) show the time variation of spatially
averaged firing rate ∆R and the time intervals ∆t between the consecutive local maxima in the plot of ⟨R(t)⟩, respectively.
Other parameters: η0 = 1, γ = 0.5 and κs = 20.

the formula (10). Inserting this result into Eq. (13) we obtain

F = η0 + πκvŴv,0

κv −

√√
(κ2

v − 4F )2 + 16γ2 + κ2
v − 4F

2



+ κsŴs,0

√√
(κ2

v − 4F )2 + 16γ2 − κ2
v + 4F

2
,

what is an equivalent form of (11).
Note that Proposition 1 allows us to explicitly express the dependence of the constant solution u on the parameter

η0 (albeit, in a parametric form). The same applies to the dependence of u on κs, if Ŵs,0 ̸= 0.

2. Linear stability

Suppose that u0 ∈ C is a constant solution of Eq. (9). To analyze its stability, we insert the ansatz u(x, t) =
u0 + v(x, t) into Eq. (9) and linearize the resulting equation with respect to small perturbations v(x, t). This yields a
linear integro-differential equation

∂v

∂t
= µv +

κv

2
Kv(v − v) +

iκs

2π
Ks(v + v), (14)

where

µ = −κv − 2iu0. (15)

Remark 1 If Re (u0) ≥ 0 and hence u0 is determined by Proposition 1, then Re (µ) < 0. Indeed, this inequality is
easy to verify by inserting the u0 defined by formula (10) into (15).

To investigate the growth or decay of different spatial modes, we insert the ansatz

v(x, t) = v+(x)e
λt + v−(x)e

λt

into Eq. (14) and equate separately the terms at eλt and eλt. Thus, we obtain a spectral problem

λv+ = µv+ +
κv

2
Kv(v+ − v−) +

iκs

2π
Ks(v+ + v−), (16)

λv− = µv− − κv

2
Kv(v+ − v−)−

iκs

2π
Ks(v+ + v−). (17)

Now, we analyze the properties of spatial Fourier modes

(v+(x), v−(x))
T = (V+, V−)

Teimx with m ∈ Z and (V+, V−)
T ∈ C2.
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Inserting this ansatz into Eqs. (16), (17) and using the identities

Kve
imx = 2πŴv,meimx and Kse

imx = 2πŴs,meimx

with the coefficients Ŵv,m and Ŵs,m defined by (2), we obtain a linear system

λV+ = µV+ + πκvŴv,m(V+ − V−) + iκsŴs,m(V+ + V−),

λV− = µV− − πκvŴv,m(V+ − V−)− iκsŴs,m(V+ + V−).

Its characteristic equation reads

λ2 − 2λRe (µ+ Pm) + |µ+ Pm|2 − |Pm|2 = 0

where

Pm = πκvŴv,m + iκsŴs,m.

Solving this equation, we obtain

λ± = Re (µ+ Pm)±
√
|Pm|2 − (Im (µ+ Pm))

2

= Re (µ) + πκvŴv,m ±
√
π2κ2

vŴ
2
v,m + κ2

sŴ
2
s,m −

(
Im (µ) + κsŴs,m

)2

.

Since the Fourier coefficients of Wv(x) and Ws(x) always satisfy the decay property |Ŵv,m|, |Ŵs,m| → 0 for |m| → ∞,
this means λ± → µ or λ± → µ for |m| → ∞. In other words, any potential instability of u0 can be associated with
relatively small indices m in the above formula for λ±.

Instabilities of the uniform state for coupling functions (7), (8) and m = 0, 1, 2, 3 are shown in Fig. 7. Their position
in the (κv, κs)-plane indicates that only the modes with m = 0 and m = 2 determine stability boundaries. Note that
along the curve m = 0, the critical eigenvalues everywhere have non-zero imaginary parts (at least for the range
κs ∈ [0, 30]). In contrast, on the curve m = 2 we find this property only for κs < 13.0. Above this value, the pair
of complex conjugate eigenvalues turns into a pair of real eigenvalues, so that the corresponding stability boundary
has a corner point. As a result, two qualitatively different bifurcation scenarios of the uniform state are expected for
κs < 13.0 and κs > 13.0. Indeed, for κs = 10 the uniform state with Re (u) ≥ 0 is stable to the left of the m = 0 curve
and as κv increases, a Hopf bifurcation occurs, which leads to the creation of a time-dependent (but still spatially
uniform) solution. However, for κs = 20 the uniform state loses stability to the m = 2 mode as κv is increased.
The eigenvalues corresponding to this instability are real, so this is a Turing bifurcation creating a stationary spatial
pattern.

(a)

κ
s

κv

m = 0

m = 1

m = 2

m = 3
 0

 10

 20

 30

−4 −3 −2 −1  0  1  2

(b)

κ
s

κv

m = 0

m = 1

m = 2

m = 3
 0

 10

 20

 30

 0.94  0.96  0.98  1  1.02

FIG. 7. (a) Stability boundaries of the uniform state of Eq. (3) determined by the condition max(Re λ+,Re λ−) = 0 for
m = 0, 1, 2 and 3. The uniform state is stable in the shaded region. (b) Enlargement of the range around κv = 1. Note that as
κs increases above 13.0, the pair of complex conjugate eigenvalues for m = 2 turns into a pair of real eigenvalues, so that the
corresponding stability boundary has a corner point. Other parameters: η0 = 1 and γ = 0.5.
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B. Stationary states

Stationary spatial patterns are non-constant time-independent solutions of Eq. (3), see Fig. 5(a). We can find them
by solving a discretized version of Eq. (3). Alternatively, we can find them using a self-consistency equation we are
about to derive. For this, we insert the ansatz u = a(x) into Eq. (3) and obtain

γ + iF (x)− κva(x)− ia2(x) = 0, (18)

where

F (x) = η0 + κvKvIm (a) +
κs

π
KsRe (a). (19)

Using Proposition 3, we can solve Eq. (18) for each x separately

a(x) = S(F (x), κv, γ). (20)

Then, inserting the result into Eq. (19), we obtain a self-consistency equation

F (x) = η0 + κvKvIm
(
S
(
F (x), κv, γ

))
+

κs

π
KsRe

(
S
(
F (x), κv, γ

))
. (21)

Note that Eq. (21) should be solved with respect to the unknown function F (x), which, in turn, determines the
corresponding stationary state a(x) by formula (20). By construction this procedure allows us to find all stationary
states satisfying |a(x)| ≤ 1, while every unphysical state that violates this inequality for at least some x is automatically
discarded.

In general, Eq. (21) cannot be solved exactly but only approximately. Given that F (x) is real and 2π-periodic, it
is convenient to approximate it using a truncated Fourier series

F (x) =

2M∑
m=0

f̂mϕm(x) with f̂m ∈ R, (22)

where

ϕ0(x) = 1,

ϕm(x) =
√
2 cos((m+ 1)x/2) for odd m, (23)

ϕm(x) =
√
2 sin(mx/2) for even m,

are elements of the L2-orthogonal trigonometric basis. Inserting this ansatz into Eq. (21) and projecting the resulting
relation onto the basis function ϕm(x), we obtain a system of equations

f̂m = η0δm0 +

∫ 2π

0

[
κvŴv,m′Im

(
S
(
F (x), κv, γ

))
+

κs

π
Ŵs,m′Re

(
S
(
F (x), κv, γ

))]
ϕm(x)dx (24)

for m = 0, 1, 2, . . . 2M , where δmn is the Kronecker delta, Ŵv,m and Ŵs,m are the Fourier coefficients of Wv(x) and
Ws(x) given by (2), and

m′ = 0 if m = 0, m′ = (m+ 1)/2 if m is odd, m′ = m/2 if m is even.

For completeness, we list here four identities∫ 2π

0

(Kvu)(x) cos(mx)dx = 2πŴv,m

∫ 2π

0

u(x) cos(mx)dx, (25)

∫ 2π

0

(Kvu)(x) sin(mx)dx = 2πŴv,m

∫ 2π

0

u(x) sin(mx)dx, (26)

∫ 2π

0

(Ksu)(x) cos(mx)dx = 2πŴs,m

∫ 2π

0

u(x) cos(mx)dx, (27)

∫ 2π

0

(Ksu)(x) sin(mx)dx = 2πŴs,m

∫ 2π

0

u(x) sin(mx)dx, (28)
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which are valid for arbitrary real function u(x), any integer m, and any integral operators Kv and Ks with symmetric
(even) kernels Wv(x) and Ws(x), respectively. We used these identities to obtain formula (24).
Note that for symmetric kernels Wv(x) and Ws(x) the dimensionality of system (24) can be halved. Indeed, it is

easy to see that in this case the operators Kv and Ks are invariant on the subspace of even functions. Therefore, we

can assume that F (x) is even and hence f̂m = 0 for all even positive m. Importantly, after such an assumption we
do not need to care about the translational symmetry of Eq. (21), which would otherwise require the addition of a
pinning condition to (24).

In conclusion, we make a remark that for each stationary pattern a(x) found using the self-consistency equation (21),
its linear stability can be analyzed according to the scheme of Section IVA2. For brevity, we do not perform such
an analysis here, but note that conceptually this will not be very different from the linear stability analysis of bump
states described in [61].

C. Travelling wave

In this section, we consider the traveling wave solutions of Eq. (3), which are uniformly drifting spatial patterns,
see Fig. 4(a), with a mathematical form

u = a(x+ st) where s ̸= 0.

Our primary approach to studying them is to realise that such waves are stationary in a uniformly travelling
coordinate system, travelling at the speed of the wave. Thus they are steady states of

∂a

∂t
= γ − κva+ i

[
η0 + κvKvIm (a) +

κs

π
KsRe (a)− a2

]
− s

∂a

∂x
(29)

where s is the speed at which they travel [89, 90]. Thus we can find them by uniformly discretising (29) in space
and solving the corresponding large set of coupled algebraic equations using Newton’s method. The spatial derivative
can be approximated using finite differences. One advantage of this method is that the stability of the wave can be
determined from the eigenvalues of the linearisation of (29) about a steady state.

An alternative approach to the study of travelling waves in Eq. (3) consists in deriving a self-consistency equation
for them. For this, we note that if s > 0 (which will be the default case below) and a(x) is a time-independent solution
of Eq. (29), then a(x) satisfies

da

dx
=

γ

s
+

iF (x)

s
− κv

s
a− i

s
a2, (30)

where

F (x) = η0 + κvKvIm (a) +
κs

π
KsRe (a).

For Eq. (30) we know (see Proposition 2 in Appendix) that for any γ > 0, s > 0, any κv ∈ R and any real 2π-periodic
function F (x), this equation has one and only one 2π-periodic solution, which lies entirely in the right half-plane
P = {w ∈ C : Re w > 0}. Therefore, we can write

a(x) = U(F (x), κv, γ, s), (31)

where U(·) denotes the corresponding solution operator. To be consistent with the above definition of F (x), we must
have

F (x) = η0 + κvKvIm
(
U
(
F (x), κv, γ, s

))
+

κs

π
KsRe

(
U
(
F (x), κv, γ, s

))
. (32)

Thus, in order to find a traveling wave solution of Eq. (3), we can first solve Eq. (32) for F (x) and then use (31) to
calculate the corresponding wave profile. Note that due to the translational symmetry of Eq. (3) we need to add an
additional pinning condition such as ∫ 2π

0

F (x) sinx dx = 0 (33)

to pick up a unique solution of this equation. This condition also allows us to find the speed of traveling wave s.
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Let us make a few remarks about the numerical implementation of the method based on the self-consistency
equation (32). Recall that the algorithm for calculating the solution operator U(·) is described in Remark 2 in
Appendix. Moreover, the oprtimal strategy for solving Eq. (32) is the application of the Galerkin method. For this,
we insert the ansatz (22) into Eq. (32) and project the resulting relation onto the trigonometric basis ϕm(x) defined
in (23). As a result we obtain a system of 2M + 1 equations

f̂m = η0δm0 +

∫ 2π

0

[
κvŴv,m′Im

(
U
(
F (x), κv, γ, s

))
+

κs

π
Ŵs,m′Re

(
U
(
F (x), κv, γ, s

))]
ϕm(x)dx (34)

where

m′ = 0 if m = 0, m′ = (m+ 1)/2 if m is odd, m′ = m/2 if m is even.

Note that the solutions of Eq. (32) do not necessarily have to be reflection-symmetric, so all integer indices m =
0, 1, . . . , 2M must be taken into account in system (34). Moreover, in this case the pinning condition (33) cannot be
omitted, although it becomes particularly simple

f̂2 = 0. (35)

Combining (34) with (35), we obtain a system that determines all f̂m in (22) and the wave speed s.

D. Standing wave

We use the term standing wave to refer to a spatiotemporal pattern that is non-constant in the spatial direction and
exhibits periodic oscillation with the same collective period for each position x. Examples of such patterns are shown
in Fig. 1(a), Fig. 3 and Fig. 5(b),(c). Mathematically, each standing wave corresponds to spatially heterogeneous
periodic solution of Eq. (3), i.e. to a solution of the form u = a(x, t) which is T -periodic in t for some T > 0. To study
how these periodic solutions depend on system parameters, we can again use two approaches. On the one hand, we
can look for periodic solutions of the discretized version of Eq. (3). On the other hand, we can derive a self-consistency
equation similar to Eq. (21) and Eq. (32). To write such a self-consistency equation, we first perform time-rescaling,
by defining a new unknown function v(x, t) = u(x, t/ω) where ω = 2π/T is the cyclic frequency corresponding to
period T . The new function v(x, t) satisfies

ω
∂v

∂t
= γ − κvv + i

[
η0 + κvKvIm (v) +

κs

π
KsRe (v)− v2

]
,

or equivalently

∂v

∂t
=

γ

ω
+

iF (x, t)

ω
− κv

ω
v − i

ω
v2, (36)

where

F (x, t) = η0 + κvKvIm (v) +
κs

π
KsRe (v). (37)

For every fixed x ∈ [0, 2π], Eq. (36) has the same form as Eq. (30), but with other variables x 7→ t and s 7→ ω.
Therefore, using the notation of the solution operator U(·), we can write

v(x, t) = U (F (x, t), κv, γ, ω) . (38)

Inserting this into the definition of F (x, t), we obtain a self-consistency equation

F (x, t) = η0 + κvKvIm
(
U
(
F (x, t), κv, γ, ω

))
+

κs

π
KsRe

(
U
(
F (x, t), κv, γ, ω

))
. (39)

Recalling that every solution v0(x, t) of the periodic boundary value problem for Eq. (36) determines a two-parameter
familily of solutions v0(x+ x0, t+ t0) with x0, t0 ∈ (0, 2π), we equip Eq. (39) with two additional pinning conditions∫ 2π

0

∫ 2π

0

F (x, t) sinx dx dt =

∫ 2π

0

∫ 2π

0

F (x, t) sin t dx dt = 0, (40)
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which allow us to pick up a single function from this family.
In the following we use a Fourier sum approximation for F (x, t):

F (x, t) =

2M∑
m=0

2N∑
n=0

f̂mnϕm(x)ϕn(t), (41)

where f̂mn ∈ R, and the ϕm are given in (23). Applying the standard Galerkin scheme to Eq. (39) we find a system

of algebraic equations that determines the coefficients f̂mn:

f̂mn = η0δm0δn0 +
〈
κvKvIm

(
U
(
F (x, t), κv, γ, ω

))
+

κs

π
KsRe

(
U
(
F (x, t), κv, γ, ω

))
, ϕm(x)ϕn(t)

〉
(42)

where

⟨u, v⟩ = 1

4π2

∫ 2π

0

∫ 2π

0

u(x, t)v(x, t)dx dt.

Moreover, using the identities (25)–(28), we simplify Eq. (42) to obtain

f̂mn = η0δm0δn0 +
〈
2πκvŴv,m′Im

(
U
(
F (x, t), κv, γ, ω

))
+ 2κsŴs,m′Re

(
U
(
F (x, t), κv, γ, ω

))
, ϕm(x)ϕn(t)

〉
, (43)

where

m′ = 0 if m = 0, m′ = (m+ 1)/2 if m is odd, m′ = m/2 if m is even.

For the patterns shown in Fig. 1(a) and Fig. 3, we can, without loss of generality, assume u(−x, t) = u(x, t) and

hence F (−x, t) = F (x, t). In this case, f̂mn = 0 for all even positive m. Therefore, the first pinning condition in (40)
is satisfied automatically. For the second pinning condition, inserting the ansatz (41) into it, we obtain

f̂02 = 0. (44)

In summary, solving the system (43), (44) we are able to find an approximate solution F (x, t) of the form (41) as well
as the corresponding frequency ω. Then, by formula (38) we can calculate the solution of Eq. (36), which after the
appropriate time rescaling u(x, t) = v(x, ωt) yields the standing wave solution of Eq. (3).

E. Lurching solutions

In this section, we consider lurching waves — the most complex type of solutions of Eq. (3) that we have been able
to investigate analytically. A lurching wave is a travelling wave, but rather than having a constant profile, its profile
periodically oscillates; see Fig. 1(b), Fig. 4(b) and Fig. 5(d). These are sometimes referred to as modulated travelling
waves [91]. Each such wave can be characterized as a fixed point of a “shift and run” map of the type described
in [81], but with a continuous shift rather than the discrete one used in [81]. More precisely, we look for lurching
waves as fixed points of the map

un+1 = P (un;χ, T )

where P (u;χ, T ) is defined by taking the function u(x), shifting it in space by an amount χ (to the left if the pattern
is moving to the right, recalling that the domain is periodic) and then integrating (3) with this shifted pattern as the
initial condition for an amount of time T . A continuous shift is easily implemented in Fourier space. If

u(x) =

M∑
n=−M

ane
inx
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then

u(x+ χ) =

M∑
n=−M

âne
inx

where ân = ane
inχ. Note that the stability of a lurching wave can be found from the eigenvalues of the Jacobian of

the map P evaluated at the relevant fixed point [81].
It is natural to expect that lurching waves can also be described using a variant of the self-consistency approach.

However, so far we have not been able to do this. The main problem is that after time rescaling v(x, t) = u(x, t/ω)
we need to consider Eq. (36) on the functional space

C̃χ =
{
v ∈ C([0, 2π]2;C) : v(x+ 2π, t) = v(x, t), v(x+ χ, t+ 2π) = v(x, t)

}
and show that for every F ∈ C̃χ equation (36) has a unique solution v ∈ C̃χ satisfying |v| ≤ 1. This turns out to be a
nontrivial task due to the nonlocal character of the boundary condition v(x+ χ, t+ 2π) = v(x, t). So we leave it for
future investigation.

V. RESULTS

Now we show how the analytical methods developed in Section IV can be used to explain the empirical stability
diagrams from Section III. We begin by reviewing the computational efficiency of the two approaches described in
Section IV. Then, we show the calculated bifurcation diagrams associated with Figures 2 and 6, which make visible
the relationships between various spatiotemporal patterns which are solutions of Eq. (3), sometimes via unstable (and
therefore invisible) solutions of this equation.

A. Computational efficiency of the proposed methods

� Stationary states. To find stationary states of (3) one could uniformly discretise this in space and solve
the corresponding large set of coupled algebraic equations using Newton’s method. Or one could solve the
system (24). Which method is more efficient depends on the number of spatial points used (call this N̂) and M ,

the number of spatial harmonics used to approximate F (x). If N̂ is small and M is large the former method is

more efficient, but if N̂ is large and M is small the latter method is more efficient. The former method has the
advantage that the stability can be readily found from the eigenvalues of the linearisation about the stationary
state.

� Travelling waves. It was found to be much more efficient to use the approach discussed at the beginning of
Sec. IVC, i.e. equation (29), than to solve the system of equations (34). The main reasons for this are (i) the
large number of harmonics used to approximate F : we used M = 50, giving 101 unknowns, and (ii) the fact
that to evaluate the operator U once we need to numerically integrate (30) four times, as explained in Remark 2.
Note that if the kernels Wv and Ws were described exactly by a small number of sinusoidal functions, F could
be expressed exactly as a finite Fourier series, with a corresponding small number of unknowns [63, 77].

� Standing waves. A standing wave is a periodic solution of (3) and so could be studied using conventional
methods after spatial discretisation [89]. This method was found to be much more efficient than the method
proposed in Sec. IVD, due to the large number of unknowns required for that method, (2M + 1)(2N + 1), and
the need to integrate (36) four times, as explained above.

B. Bifurcation diagrams for κs = 10

Recall that we found two coexisting stable solutions at κv = 1. We first discuss the standing waves and other
related solutions of Eq. (3). The spatially-uniform state is stable for κv < 0.96934 and it undergoes a supercritical
Hopf bifurcation with m = 0 at this point. The emerging uniformly oscillating state is shown in black in Fig. 8 and
is stable upon creation but undergoes a subcritical bifurcation at κv = 0.96974, generating an unstable branch of
standing waves, shown in blue in Fig. 8. (This branch of spatially uniform oscillating states is stable only over a very
small range of κv values and was not observed in Fig. 2.) At κv = 0.94185 a saddle-node bifurcation occurs creating
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FIG. 8. Bifurcation diagram of standing waves for η0 = 1, γ = 0.5 and κs = 10. Black: spatially-uniform states. Blue: standing
waves. Red: standing waves with less symmetry. Solid: stable; dashed: unstable.

stable and unstable branches of standing waves. At κv = 0.97069 the branch of standing waves undergoes a symmetry
breaking bifurcation and a branch of stable standing waves with more complex behavior and less symmetry (shown
in red Fig. 8) appears. The latter loses its stability at κv = 1.0091. This analysis provide an explanation for the
results shown in the left column of Fig. 2: there is a stable standing wave for smaller values of κv and one with less
symmetry for larger values.

We now discuss the travelling waves. The travelling wave is stable at κv = 0.96 and either decreasing or increasing
κv destabilises the wave in a Hopf bifurcation; see Fig. 9. The leftmost bifurcation, at κv = 0.95243, seems subcritical
and occurs to the right of the saddle-node bifurcation. Following the branch through the saddle-node bifurcation it
terminates in a collision with the spatially unform state at κv = 0.9868. Put another way, the spatially uniform state
undergoes a subcritical Hopf bifurcation with m = 2 at this parameter value, leading to the creation of an unstable
travelling wave — see Fig. 7.

The rightmost Hopf bifurcation of the travelling wave, at κv = 0.96398, is supercritical and results in the creation
of a stable lurching solution. We followed this lurching wave and a plot of the spatial shift χ versus κv is shown in
Fig. 10. The magnitude of χ is small, in keeping with the slow drift mentioned in Sec. III A. These lurching waves
remain stable until κv = 1.0301, where they apparently undergo a torus bifurcation, creating a solution which is
quasiperiodic in a uniformly travelling coordinate frame. As κv grows further, these waves become chaotic. This
analysis provide an explanation for the results shown in the right column of Fig. 2: the travelling wave in Fig. 9 has
∆R = 0, the lurching wave is seen at κv = 1, for example, and the quasiperiodic and chaotic behaviour is seen in
Fig. 2(d).

C. Bifurcation diagram for κs = 20.

The uniform state undergoes a subcritical Turing bifurcation with m = 2 at κv = −1.53 (see Fig. 7). An unstable
branch of stationary two-bump solutions emerges at this point, shown dashed in Fig. 11. This solution becomes stable
in a saddle-node bifurcation at κv = −1.6099. At κv = 0.88565 a supercritical Hopf bifurcation occurs and a branch
of standing waves (or breathing two-bump solutions), shown in blue in Fig. 12 emerges.

These standing waves are stable until a symmetry breaking period-doubling bifurcation at κv = 1.0719. To the right
from this point, a branch of standing waves in the form of alternating two-bump patterns is stable, shown in solid red
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FIG. 9. Bifurcation diagram of travelling waves for η0 = 1, γ = 0.5 and κs = 10. Solid: stable; dashed: unstable. The two
bifurcations at which the wave loses stability are Hopf bifurcations.

in Fig. 12. At κv = 1.5563 this alternating pattern becomes unstable through a supercritical torus bifurcation and
a branch of lurching states appears, shown in black in Fig. 12. The lurching state is stable until κv = 1.6248. After
that it undergoes a sequence of bifurcations leading to a chaotic regime. Note that the branch of periodic solutions
shown in blue in Fig. 12 terminates in a collision with an unstable spatially uniform periodic solution (not shown or
analysed). This analysis provides an explanation for the results shown in Fig. 6.

VI. DISCUSSION

In this paper, we considered the neural field equation (3), which describes the long-term dynamics of a ring network
of QIF neurons with nonlocal synaptic and gap junction coupling, in the limit of a large number of neurons. We
showed that apart from spatially uniform states, this model also supports various spatiotemporal patterns, including
stationary bump states, standing and travelling waves, and lurching waves. We showed how each of these states
can be analyzed semi-analytically using the discretized version of Eq. (3) or using the corresponding self-consistency
equation. We believe this to be the first study of spatially extended QIF networks using self-consistency arguments.
Finally, we computed detailed bifurcation diagrams for (3), which linked the previous observations together.

The linear stability analysis of constant solutions of Eq. (3) performed in Sec. IVA revealed that there are two
qualitatively different bifurcation scenarios for small and large values of synaptic coupling; see Fig. 7. More specifically,
for κs < 13 the uniform state loses its stability due to the Hopf bifurcation with a spatially uniform eigenfunction,
resulting in the creation of a spatially-uniform oscillating state. In contrast, for κs > 13 the destabilization of the
uniform state occurs due to a Turing bifurcation with a spatially modulated eigenfunction with wave number m = 2.
This results in the creation of a “two-bump” stationary solution.

Using the algorithms described in Sec. IV, we followed the five types of solutions of Eq. (3) primarily as the
parameter κv was varied. This allowed us to better understand the relationship between these solutions and provide
an explanation of the numerical results found in Sec. III. More specifically, for κs = 10 we found coexisting standing
waves and travelling waves, and a type of lurching wave that resulted from a travelling wave undergoing an oscillatory
instability. For κs = 20 we found the scenario shown in Fig. 12, where more complex solutions are created as κv is
increased. Interestingly, the lurching solution found for this value of κs results from a standing wave solution losing
stability and starting to travel, hence the increase in χ from zero as κv is increased, shown in Fig. 12(c).
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FIG. 10. Behaviour of lurching waves for η0 = 1, γ = 0.5 and κs = 10. χ is the spatial shift. Solid: stable; dashed: unstable.
The left end of the branch of solutions is created in the rightmost bifurcation shown in Fig. 9.

The model (3) has many parameters and we have only investigated varying one of them for several values of another.
However, our methods could equally-well be used to investigate other variations of parameters. We believe that the
numerical and analytical methods of Sec. III and Sec. IV can be extended to other types of networks consisting of
QIF neurons, for which stationary, oscillating and moving patterns also define their typical dynamical behaviour.
In particular, these methods can be useful for studying two-, three- and higher-dimensional arrays, networks with
population structure and networks with propagation delays. Even for the model considered above, it is possible to
further investigate which patterns will occur when using other coupling functions Ws(x) and Wv(x), e.g. wrapped
Gaussian, exponentially decaying functions, etc. Moreover, it would be interesting to check if these patterns persist
in the presence of external noise. In particular, our methods may be able to be generalized to take advantages of the
“pseudocumulant” expansions proposed in [92]. We leave these questions for future work.

APPENDIX

Let us consider a complex Riccati equation

dw

dt
= γ + if(t)− g(t)w − iw2 (45)

with a parameter γ ∈ R and real-valued functions f(t) and g(t). In this section, we show that for γ > 0 all solutions
of Eq. (45) have special invariance properties with respect to the complex half-plane

P = {w ∈ C : Re w > 0}.

In order to proceed, we recall that the complex plane transformation

z =
1− w

1 + w
(46)

maps the half-plane P onto the unit disc

D = {z ∈ C : |z| < 1}.
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FIG. 11. Stationary two-bump solution η0 = 1, γ = 0.5 and κs = 20. Solid: stable; dashed: unstable. The vertical axis shows
maxx R(x) − minx R(x). The solution is stable between the saddle-node bifurcation and a supercritical Hopf bifurcation at
κv = 0.88565. (Note that negative values of κv are unphysical, but we plot them to show the full branch of solutions.)

Moreover, using formula (46) as a change of variable, we can rewrite Eq. (45) in an equivalent form

dz

dt
= −γ + if(t)

2
(1 + z)2 +

g(t)

2
(1− z2) +

i

2
(1− z)2. (47)

Then, it is easy to see that Eq. (47) is a complex Riccati equation

dz

dt
= c0(t) + c1(t)z + c2(t)z

2

with

c0(t) =
−γ − if(t) + g(t) + i

2
, c1(t) = −γ − if(t)− i, c2(t) =

−γ − if(t)− g(t) + i

2
.

Therefore, Proposition 2 from [63] implies that for every γ > 0 and for all real 2π-periodic continuous functions f(t)
and g(t), Eq. (47) has exactly one stable 2π-periodic solution and this solution satisfies |z(t)| < 1 for all 0 ≤ t ≤ 2π.
Moreover, using the main argument of the proof of Proposition 2 in [63], we can show that every solution of Eq. (47)
with an initial condition in D remains in this unit disc for any finite time interval.

Due to the equivalence between the solutions of Eq. (45) and the solutions of Eq. (47), we can reformulate the
above results as follows.

Proposition 2 Suppose that γ > 0 and f(t), g(t) are real 2π-periodic continuous functions.

(i) Then for every w0 ∈ P the complex Riccati equation (45) with initial condition w(0) = w0 has a solution w(t),
which is bounded on the interval [0, 2π] and satisfies Re w(t) > 0.

(ii) Moreover, Eq. (45) has exactly one stable 2π-periodic solution and this solution satisfies Re w(t) > 0 for all
0 ≤ t ≤ 2π.

Since Eq. (45) belongs to the class of complex Riccati equations its Poincaré map coincides with a Möbius trans-
formation, see [93, 94]. This fact can be used to speed up the computation of periodic solutions of Eq. (45).
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FIG. 12. Bifurcation diagrams for κs = 20. Blue: periodic solution. Red: period-doubled solution. Black: lurching solution.
Solid: stable; dashed: unstable. Panel (b) is an enlargment of panel (a). Panel (c) shows the shift, χ, of the lurching solution.

Remark 2 If the conditions of Proposition 2 are fulfilled, then the stable solution of Eq. (45) can be computed in the
following way.

(i) One solves Eq. (45) on the interval t ∈ (0, 2π] with three different initial conditions w(0) = wk ∈ P, k = 1, 2, 3,
and obtains three solutions Wk(t). Since each wk lies in the half-plane P this automatically implies that Wk(t) is
bounded on the interval t ∈ [0, 2π]. Note that this fact is not obvious a priori, since some of the solutions of Eq. (45)
blow up in finite time.

(ii) One denotes ζk = Wk(2π). Then, due to the properties of Poincaré map one has ζk = M(wk), k = 1, 2, 3,
where M(w) is a Möbius transformation representing this map. The above three relations can be used to reconstruct
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the map M(w), namely

M(w) =
aw + b

cw + d

where

a = det

 w1ζ1 ζ1 1

w2ζ2 ζ2 1

w3ζ3 ζ3 1

 , b = det

 w1ζ1 w1 ζ1

w2ζ2 w2 ζ2

w3ζ3 w3 ζ3

 ,

c = det

 w1 ζ1 1

w2 ζ2 1

w3 ζ3 1

 , d = det

 w1ζ1 w1 1

w2ζ2 w2 1

w3ζ3 w3 1

 .

(iii) Once the map M(w) is known, one can find its fixed points by solving the quadratic equation

cw2 + dw − aw − b = 0.

This yields two roots

w± =
a− d±

√
(a− d)2 + 4bc

2c
.

(iv) Choosing from the roots w+ and w− the one that lies in the half-plane P, one obtains the initial condition that
determines the periodic solution of interest. The latter can be computed by solving Eq. (45) with this initial condition.

(v) Sometime it may happen that the Poincaré map M(w) is strongly contracting so that

|ζ1 − ζ2|+ |ζ3 − ζ2| < 10−8,

where the value 10−8 is chosen through experience. In this case, the calculations in steps (ii) and (iii) become
inaccurate. Then the initial condition of the periodic solution of interest is approximately given by the average (ζ1 +
ζ2 + ζ3)/3.

The above steps (i)–(v) can be understood as a constructive definition of the solution operator of Eq. (45), which
for every γ > 0 and all real 2π-periodic coefficients f(t) and g(t) yields the corresponding stable 2π-periodic solution
of Eq. (45).

Proposition 3 For constant coefficients f and g, Eq. (45) has a single fixed point satisfying Re (w) ≥ 0. This fixed
point is determined by the formula

w = S(f, g, γ) := 1

2

√√
(g2 − 4f)2 + 16γ2 − g2 + 4f

2
+

i

2

g −

√√
(g2 − 4f)2 + 16γ2 + g2 − 4f

2

 . (48)

Proof: Any fixed point of Eq. (45) satisfies

γ + if − gw − iw2 = 0.

This quadratic equation has two solutions

w = − 1

2i

(
g ±

√
g2 + 4i(γ + if)

)
=

i

2

(
g ±

√
g2 − 4f + 4iγ

)
. (49)

Since γ > 0, de Moivre’s formula yields

g2 − 4f + 4iγ =
√
(g2 − 4f)2 + 16γ2

(
cos

(
arccot

g2 − 4f

4γ

)
+ i sin

(
arccot

g2 − 4f

4γ

))
.
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Hence √
g2 − 4f + 4iγ = 4

√
(g2 − 4f)2 + 16γ2

(
cos

(
1

2
arccot

g2 − 4f

4γ

)
+ i sin

(
1

2
arccot

g2 − 4f

4γ

))
.

Using the half-angle formulas and the identity

cos

(
arccot

g2 − 4f

4γ

)
=

g2 − 4f√
(g2 − 4f)2 + 16γ2

,

we rewrite this as follows

√
g2 − 4f + 4iγ =

√√
(g2 − 4f)2 + 16γ2 + g2 − 4f

2
+ i

√√
(g2 − 4f)2 + 16γ2 − g2 + 4f

2
.

Inserting this expression into (49) and choosing the sign of the square root that ensures the inequality Re (w) ≥ 0, we
obtain formula (48).
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