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Chimeras occur in networks of coupled oscillators and are characterised by the coexistence of synchronous and asyn-
chronous groups of oscillators in different parts of the network. We consider a network of nonlocally coupled phase
oscillators on an annular domain. The Ott/Antonsen ansatz is used to derive a continuum level description of the oscil-
lators’ expected dynamics, in terms of a complex-valued order parameter. The equations for this order parameter are
numerically analysed in order to investigate solutions with the same symmetry as the domain, and chimeras which are
analogous to the “multi-headed” chimeras observed on one-dimensional domains. Such solutions are stable only for
domains with widths that are neither too large nor too small. We also study rotating waves with different winding num-
bers which are similar to spiral wave chimeras seen in two dimensional domains. We determine ranges of parameters
such as the size of the domain for which such solutions exist and are stable, and the bifurcations by which they lose
stability. All of these bifurcations appear subcritical.

Chimeras are novel spatiotemporal patterns which oc-
cur in networks of oscillators, characterised by coexist-
ing regions of synchronised and asynchronous oscillators.
While they have been studied on one-, two- and three-
dimensional domains, here we consider an annular do-
main. We find solutions analogous to the “multi-headed”
chimeras observed on ring networks, and rotating waves
with varying levels of synchrony in the radial direction.
We numerically analyse these patterns in the continuum
limit, using the Ott/Antonsen ansatz to derive an exact de-
scription of the oscillators’ expected state. Numerical bi-
furcation theory is used to determine the regions of exis-
tence and stability of a variety of chimera-like patterns.

I. INTRODUCTION

The study of synchronisation in networks of oscillators is a
topic of much interest46,50. One phenomenon of recent promi-
nence is the existence of chimeras — states characterised
by the coexistence of synchronous and asynchronous groups
of oscillators31,42. These have been studied in networks
that can be thought of as having zero2,23,44,45,47, one4,15,52,53,
two30,37,43,49,54 or three26–28 spatial dimensions. In two spa-
tial dimensions, the domains considered include the surface
of a sphere22,43 a “flat” torus, i.e. a square domain with peri-
odic boundary conditions14,37,41,54, and a square domain with
boundary conditions which take into account the lack of os-
cillators outside the domain18. The coupling between oscilla-
tors is normally nonlocal, although chimeras can exist when
coupling is only local20. The existence of chimeras was first
studied using self-consistency arguments3,15,30, and later the
Ott/Antonsen ansatz38,39 was used to determine their stabil-
ity18. However, this theory is only applicable to sinusoidally
coupled phase oscillators, and many recent results relate to
only numerical simulation of networks of oscillators55.
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Here we consider spatiotemporal patterns on annular do-
mains, using the Kuramoto model of sinusoidally coupled
phase oscillators5,16. We consider nonlocally coupled hetero-
geneous oscillators with frequencies randomly chosen from
a Lorentzian distribution in order to use the Ott/Antonsen
ansatz38,39 to derive continuum level equations whose fixed
points and bifurcations thereof can be studied numerically. An
annulus has two limiting cases for which we can compare our
results to previous work: the inner radius is zero, correspond-
ing to a circular domain30, and equal inner and outer radii,
corresponding to a ring4,18.

The continuum version of nonlocally coupled phase oscil-
lators in two spatial dimensions can be written22,43

∂θ(x)
∂ t

= ω(x)−
∫

W (|x−x′|2)sin [θ(x)−θ(x′)+α]dx′

(1)
where θ(x) and ω(x) are the phase and intrinsic frequency,
respectively, of the oscillator at position x and the integral is
taken over the domain. The nonlocal coupling is described
by the function W , which we write as a function of distance
squared. We will use

W (r) = e−r, (2)

corresponding to a Gaussian kernel.
Writing the polar coordinates of x as (r,φ) and those of x′

as (s,φ +ψ) we find that |x− x′|2 = r2 + s2 − 2rscosψ and
thus on an annular domain we have

∂θ(r,φ)
∂ t

= ω(r,φ)

−
∫ b

a
s
∫

π

−π

W (r2 + s2 −2rscosψ)sin [θ(r,φ)−θ(s,φ +ψ)+α] dψ ds

(3)

where a and b are the inner and outer radii of the domain,
respectively, and for simplicity we do not show time depen-
dence explicitly. The heterogeneity is introduced by choosing
the value of ω at each point in the domain from a Lorentzian
with mean zero and width δ . In practice, when numerically
solving (3) we discretise both the radial and angular directions
with regular grids.
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Using a standard derivation22,53 we can use the
Ott/Antonsen ansatz to derive the corresponding evolu-
tion equation for the complex-valued order parameter
z:

∂ z(r,φ)
∂ t

=−δ z+ e−iα R/2− eiα R̄z2/2 (4)

where

R(r,φ) =
∫ b

a
s
∫

π

−π

W (r2 + s2 −2rscosψ)z(s,φ +ψ) dψ ds

(5)
and overbar indicates the complex conjugate.

The physical interpretation of z(r,φ) is that the distribution
of phases, θ , at (r,φ) is

P(θ) =
1−|z|2

2π [1−2|z|cos(θ − argz)+ |z|2]
, (6)

a unimodal function of θ with a peak at θ = argz, whose
sharpness depends on |z|: |z|= 0 corresponds to a uniform dis-
tribution while as |z| → 1 the distribution approaches a Dirac
delta function at θ = argz18,36.

More generally, one can treat (4)-(5) as a dynamical sys-
tem in itself. For fixed (r,φ), (4) is a complex Riccati equa-
tion32,33. We can also regard z(r,φ) as the state of a planar “os-
cillator” at (r,φ) with amplitude |z| and phase arg(z), where
|z| encodes the level of local synchrony at (r,φ). Thus (4) is
similar in form to a Stuart-Landau oscillator, and with cou-
pling (5), to a nonlocally coupled complex Ginzburg–Landau
equation12.

Note that (4)-(5) is invariant under the transformation z →
zeiγ for any γ , which suggests moving to a rotating coordinate
system. In this rotating coordinate system (4) is replaced by

∂ z(r,φ)
∂ t

= (iΩ−δ )z+ e−iα R/2− eiα R̄z2/2 (7)

where Ω is the speed of rotation of the coordinate frame. The
solutions we are interested in are fixed points of (7) where
R(r,φ) is given by (5), and the rest of the paper concerns the
solutions of these two equations.

The work most similar to ours is10, who consider nonlocally
coupled identical phase oscillators on an annulus. These au-
thors make more analytical progress than we can, as the state
of each oscillator is described by a single angular variable,
whereas using the Ott/Antonsen ansatz, the expected state of
each oscillator — described by a probability density function
parametrised by a complex variable z with both a magnitude
and a phase — is the quantity of interest. An advantage of
the approach here is that we can describe varying levels of
synchrony (chimeras), and the equations do not break down
when a single oscillator breaks away, as occurs in the descrip-
tion used in10. Another difference between our work and that
in10 is that they considered an interaction function (the sin(·)
in (3)) which is zero if the phases at two different points in the
domain are the same. This means that complete synchrony
is always a solution. However, having a nonzero phase off-
set α in (3), as we do, is likely to promote the existence of

chimeras30. And it is well-known that varying α is likely to
cause a chimera to undergo a bifurcation2,18. Choosing het-
erogeneous oscillators of the form used here means that the
Ott/Antonsen manifold (corresponding to solutions derived
using the Ott/Antonsen ansatz) is stable, and thus we can de-
termine the asymptotic dynamics by restricting to this mani-
fold. If the oscillators were identical one could still use the
Ott/Antonsen ansatz, but a more complete description would
require use of the Watanabe/Strogatz ansatz51. However, the
equations resulting from the latter ansatz are known to have
continuous families of neutrally stable solutions which are
difficult to study numerically, unlike those derived with the
Ott/Antonsen ansatz.

The structure of the paper is as follows. In Sec II we
study solutions which are invariant under rotation about the
centre of the annulus (rotationally symmetric solutions). In
Sec. III we consider the analogue of the “one-headed” or clas-
sical chimera on a ring. We then move on to “multi-headed”
chimeras in Sec. IV. The other form of chimera that can oc-
cur on an annulus is a rotating wave or spiral wave chimera,
and these are considered in Sec. V. The stability of the zero
solution, corresponding to complete asynchrony, is examined
in Sec. VI and we conclude in Sec. VII.

II. ROTATIONALLY SYMMETRIC SOLUTIONS

A rotationally symmetric solution of (7) has no dependence
on φ , and is governed by

∂ z(r)
∂ t

= (iΩ−δ )z+ e−iα R/2− eiα R̄z2/2 (8)

where

R(r) =
∫ b

a
s
∫

π

−π

W (r2 + s2 −2rscosψ)z(s) dψ ds. (9)

Using the Gaussian (2) we have

R(r) = e−r2
∫ b

a
se−s2

z(s)
∫

π

−π

e2rscosψ dψ ds.

But ∫
π

−π

e2rscosψ dψ = 2πI0(2rs)

where I0 is the modified Bessel function of the first kind, so

R(r) = 2πe−r2
∫ b

a
I0(2rs)se−s2

z(s) ds (10)

Rotationally symmetric solutions are thus described by the
one-dimensional integro-differential equation (8) with (10).
Clearly z = 0 is a fixed point of these equations, but we are in-
terested for now in nontrivial solutions. Note that (8) and (10)
are invariant under the transformation z → zeiγ for any γ , so
to remove this invariance (and determine Ω) we need to ap-
pend a “pinning” condition such as arg(z(a)) = 0 which se-
lects one solution from this continuous family when finding
steady states.
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FIG. 1. A example of a rotationally symmetric solution for which
z is independent of the angular position in the domain. (a) Stable
steady state of (8) for δ = 0.01. Blue solid: |z|; red dashed: arg(z).
The black curves show the same quantities (matching line styles) for
δ = 0.001. (b) Snapshot of sinθ for the discrete system (3) with
δ = 0.01. Other parameters: a = 0.4,b = 1,α = π/2−0.08.

A. Results

We fix parameters δ = 0.01,α = π/2−0.08. The integral
in (10) is approximated using the trapezoidal rule. A typical
stable steady state of (8) shown in Fig. 1(a), in colour. The
nonzero value of δ means that oscillators can never perfectly
lock, so |z|< 1. We see that oscillators near the inner bound-
ary are nearly synchronous (|z| ≈ 1), and they become less
synchronous (|z| decreases) as we move towards the outer ra-
dius. Note that we have shifted the argument of z so that it is
zero at the inner radius. Panel (b) shows a snapshot of sinθ

for the discrete network (3). As δ is decreased the distinction
between synchronous and asynchronous oscillators becomes
clearer, as shown by the black curves in panel (a) correspond-
ing to δ = 0.001.

There is no universally accepted definition of a chimera13,
but we argue that despite differing levels of synchrony within
the domain, the solution shown is not a chimera, in the same
way that the partially synchronous solution of the Kuramoto
model5 is not a chimera. The different levels of synchrony are
a result of the shape of the domain and the differing levels of
influence that other oscillators have on a specific one: those
near the inner radius receive a different (weighted) input than
those near the outer radius. In addition, this solution has the
same symmetry as the domain, i.e. that of a circle, whereas
chimeras are generally thought of as resulting from the break-
ing of some symmetry of the domain.

We are interested in bifurcations caused by changing the
geometry of the domain, and following this rotationally sym-
metric solution as a is increased we obtain Fig. 2. The so-
lution undergoes a subcritical symmetry-breaking bifurcation
producing an unstable “1-head” chimera which we analyse in
the next section. The rotationally symmetric solution remains
stable as a is decreased to zero. (Stability is determined by lin-
earising the full dynamics (7) about the rotationally symmetric
solution.) The largely coherent region remains localised near
the inner boundary and at a = 0 we obtain a stable coherent
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FIG. 2. Existence and stability of rotationally symmetric and “1-
head” chimera solutions. Ω as a function of a for a rotationally
symmetric solution (blue) and “1-head” chimera (red). Solid: sta-
ble, dashed: unstable. Other parameters: b = 1,δ = 0.01,α =
π/2− 0.08. There is a small range of a values, just above a = 0.5,
for which both solutions are stable. The rightmost instability of the
1-head solution is a subcritical Hopf bifurcation.

spot solution, as seen in22,37 (not shown).

III. ONE-HEAD CHIMERA

The term “multi-headed” chimera refers to chimeras on a
one-dimensional domain for which there are multiple inco-
herent regions (“heads”) alternating with coherent regions29.
Thus the classical chimera on a ring4,15 could be referred to
as a “one-head” chimera. For a thin annulus (with similar in-
ner and outer radii) we expect to see a similar state for some
parameter values. An example of such a solution is shown
in Fig. 3. In panel (a) we see |z| for a steady state of (7).
There is a spatially-localised region of almost synchronous
oscillators (where |z| is near 1) near the inner radius while
the rest of the domain is largely asynchronous. A snapshot of
a solution to (3) is shown in Fig. 3 (b). The position of the
synchronous group is largely determined by the initial con-
ditions, and thus they do not match in the two panels. This
solution is a chimera, as it has less symmetry than that of the
domain. There is a continuum of such solutions, parametrised
by their angular position in the domain, just as for the clas-
sical chimera on a ring4,15. Also, the average frequency of
the largely synchronous oscillators is different from that of
the asynchronous ones (not shown), as required. As above,
decreasing δ makes it more clear that this solution consists
of a small region of nearly synchronous oscillators with the
remainder being largely asynchronous (not shown).

Following this one-head chimera as a is varied we obtain
the red curve in Fig. 2. As mentioned, it is created in a subcrit-
ical symmetry-breaking bifurcation from the rotationally sym-
metric solution when a is slightly larger than 0.5. It quickly
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becomes stable through a saddle-node bifurcation and then
as a is increased it loses stability through a Hopf bifurcation
which (from numerical simulations) appears to be subcritical.

FIG. 3. Two representations of a “1-head” chimera. (a): |z| for a
steady state of (7). (|z| close to 1 indicates approximate synchrony.)
(b): a snapshot of sinθ for (3). Parameters: a = 0.65,b = 1,δ =
0.01,α = π/2−0.08.

IV. MULTI-HEADED CHIMERAS

On a ring network, multi-headed chimeras with even num-
bers of heads have been observed29. On an annular domain we
also see two-headed, four-headed and six-headed chimeras, as
shown in Fig. 4. The left column shows |z|, and we clearly see
the alternating regions of high and low synchrony. The phases
of successive highly-synchronous groups differ by π , as seen
from the right column, where arg(z) is plotted. (Note that a
constant can be added to the phase of z at a steady state of (4),
and we have chosen this constant to make clear this phase
difference.) These states are all stable, and initial conditions
similar to the solutions of interest must be used in order to
find them. Solutions with more heads can be found for do-
mains with larger circumferences.

To uncover bifurcations due purely to varying the geom-
etry of the domain we keep b constant and vary a, as done
for Fig. 2. The results for the two-head chimera are shown in
Fig. 5. The solution loses stability at a = 1.15 and at a = 0.53.
Both of these bifurcations are Hopf bifurcations, and from nu-
merically solving (4) it seems that both bifurcations are sub-
critical. Also shown in Fig. 5 is an example of an unstable
two-head chimera. Stability was determined by linearising (7)
about the corresponding steady state.

Varying a the four-head chimera loses stability at a = 2.19
and at a = 1.48 as shown in Fig. 6. Both of these are
symmetry-breaking bifurcations, and from numerically solv-
ing (4) it seems that both bifurcations are subcritical. Also
shown in Fig. 6 is an example of an unstable four-head
chimera.

Varying a the six-head chimera loses stability at a = 1.46
in a subcritical Hopf bifurcation and at a = 1.87 in a subcrit-
ical symmetry breaking bifurcation, as shown in Fig. 7. Also
shown in Fig. 7 is an example of an unstable six-head chimera.

FIG. 4. Examples of stable multi-headed chimera solutions of (7). (a)
and (b): a two-headed chimera; (c) and (d): a four-headed chimera;
(e) and (f): a six-headed chimera. The left column shows |z|, indicat-
ing the level of local synchrony, and the right shows arg(z). Param-
eters: δ = 0.01,α = π/2− 0.08. 2-head: (a,b) = (1,1.5), 4-head:
(a,b) = (1.8,2.5), 6-head: (a,b) = (1.8,3).

In summary, we have found multi-headed chimeras on an-
nular domains which are analogous to those found on ring
domains29. They occur for α slightly smaller than π/2, the
same range in which other chimeras of this form have been
found3,31. Holding the outer radius b and the parameter α

constant while varying the inner radius a, we find that these
solutions exist all the way down to a = 0 (i.e. a circular do-
main) but are stable only for a range of values of a bounded
away from both 0 and b. These solutions all seem to undergo
subcritical bifurcations as a is varied, past which the system
jumps to a very different type of solution. All of the stable
chimeras shown here have been reproduced in simulations of
the discrete network (3) (not shown). Regarding the loss of
stability as a → b, note that R → 0 in this limit, so to obtain
the correct equation describing oscillators on a ring (and to
not have Ω → 0) in this limit one could alternatively consider
a model in which R is normalised by the area of the annulus,
i.e. R is replaced by R/[π(b2 −a2)].
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FIG. 5. Existence and stability of a two-head chimera. Ω is plotted
as a function of a for the two-head chimera. Solid: stable; dashed:
unstable. The inset shows |z| for the unstable solution at a = 0.1457.
b = 1.5,δ = 0.01,α = π/2−0.08.

FIG. 6. Existence and stability of a four-head chimera. Ω is plotted
as a function of a for the four-head chimera. Solid: stable; dashed:
unstable. The inset shows |z| for the unstable solution at a= 0.11097.
b = 2.5,δ = 0.01,α = π/2−0.08.

V. ROTATING WAVES

For other initial conditions and parameter values it is possi-
ble to obtain rigidly rotating waves, with an example shown in
Fig. 8. Panel (a) shows |z| for a solution of (4)-(5). We see that
is has dependence on r only and is close to 1 for most of the
domain, corresponding to near synchrony, but decreases sig-
nificantly at both the inner and outer boundaries, correspond-
ing to asynchrony. Panel (b) shows sin(arg(z)) and we see
that arg(z) varies by 2π during one rotation about the centre

FIG. 7. Existence and stability of a six-head chimera. Ω is plotted
as a function of a for the six-head chimera. Solid: stable; dashed:
unstable. The inset shows |z| for the unstable solution at a= 0.14616.
b = 3,δ = 0.01,α = π/2−0.08.

FIG. 8. An example of a rotating wave solution. (a): |z| and (b):
sin(arg(z)) for a solution of (4)-(5). (c): a snapshot of sinθ for a
solution of the discrete model (3). (d): B1(r) (solid blue) and Θ1(r)
(dashed red) corresponding to the steady state of (11). Parameters:
a = 0.5,b = 2,δ = 0.01,α = 1.

of the domain. Panel (c) shows sinθ for a solution of the dis-
crete network (3) for the same parameter values. The lower
levels of synchrony near the inner and outer radii are clearly
seen.

Such states have been considered previously in the limit of
a = 0, for which there may be an incoherent “core” at the
centre of a spiral wave, and these are referred to as “spiral
wave chimeras”30. Similar spirals with incoherent cores have
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been seen in other networks of nonlocally coupled oscillators
on two-dimensional domains with a variety of domain shapes
and coupling schemes14,18,22,37,41,43,49,54. Rotating waves of
this form (but with phase locked oscillators) were studied in
networks of identical oscillators in10.

For rotating wave solutions of this form, we make the ansatz
z(r,φ , t) = Bn(r, t)ei(−Ωnt+nφ+Θn(r,t)) where n ∈ Z is the wind-
ing number8,10,30. Then

R(r,φ , t) =
∫ b

a
s
∫

π

−π

W (r2 + s2 −2rscosψ)z(s,φ +ψ, t) dψ ds

= e−iΩnt
∫ b

a
s
∫

π

−π

W (r2 + s2 −2rscosψ)Bn(s, t)ei(n(φ+ψ)+Θn(s,t)) dψ ds

= e−iΩnteinφ e−r2
∫ b

a
Bn(s, t)se−s2

eiΘn(s,t)
∫

π

−π

e2rscosψ einψ dψ ds

= 2πe−iΩnteinφ e−r2
∫ b

a
Bn(s, t)In(2rs)se−s2

eiΘn(s,t)ds

≡ 2e−iΩnteinφ Fn(r)

where In is the modified Bessel function of the first kind. Sub-
stituting this ansatz for z into (4) we obtain

∂Bn

∂ t
+ iBn

∂Θn

∂ t
= (iΩn−δ )Bn+e−i(α+Θn)Fn−ei(α+Θn)F̄nB2

n,

(11)
the real and imaginary parts of which give the dynamics for
the radially-dependent variables Bn and Θn, respectively. We
are interested in steady states of (11), which correspond to
waves like that in Fig. 8 which rigidly rotate about the origin
with frequency Ωn. (Note that if n = 0 we obtain the rota-
tionally symmetric solutions studied in Sec. II.) Steady states
of (11) are invariant under a uniform phase shift Θn(r) →
Θn(r)+ γ for any constant γ , so we set Θn(a) = 0 to remove
this invariance (see Fig. 8(d)). Setting δ = 0 and Bn = 1,
i.e. assuming identical oscillators which are phase locked, the
steady state of (11) is equivalent to (2.5)-(2.6) in10, which are
expressions describing rotating waves for identical oscillators
on an annulus.

A. Varying a

As a demonstration of the effects of varying the geom-
etry we fix b = 4 and α = 0.3 and vary a for different
values of n. The results are shown in Fig. 9. We see
that all solutions of this form are stable for a sufficiently
close to b, i.e. for sufficiently narrow annuli, but they all
lose stability as a is decreased, through apparently subcrit-
ical Hopf bifurcations. (Stability is determined by linearis-
ing the full dynamics around such solutions.) The values
of a at which the rotating waves undergo bifurcations are
0.21793,0.74186,1.2688,2.0523,3.2752, for n = 1,2,3,4,5,
respectively. For all solutions, oscillators at the inner bound-
ary become significantly asynchronous as a is decreased while
the rest remain largely synchronised, i.e. the solutions ap-
proach spiral wave chimeras, although with different numbers
of “arms” depending on the value of n. This phenomenon (the
breakup of synchrony as a is decreased) was also observed
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FIG. 9. Existence and stability of rotating waves for a fixed outer
radius. Ω is plotted as a function of the inner radius a for rotating
waves with different values of the winding number n. Solid: stable;
dashed: unstable. Parameters: b = 4,δ = 0.01,α = 0.3.

by10, who conjectured that these chimeras are created in a
saddle-node-on-invariant-circle bifurcation.

In the limit a → b the domain becomes a ring, and these
rotating waves approach the twisted waves studied in35. Their
existence and stability, for a fixed coupling function, depends
on parameters α and δ , as well as their winding number n.

B. Varying b

Alternatively, we fix a = 2,α = 0.3 and vary b for different
values of n. The results are shown in Fig. 10. The waves with
n= 1 and 2 are stable over the range shown. The n= 3 wave is
stable for b = 2.48 < b while the n = 4 wave is stable only for
the range 4.11 < b < 6.88. All of the bifurcations shown are
subcritical Hopf bifurcations. As with varying a, it seems that
waves with smaller winding numbers n are stable over a wider
range of parameters. For the parameters shown the oscillators
remain essentially synchronised.

C. Varying α

We now fix a = 1,b = 3 and consider varying α . This pa-
rameter was varied in several previous papers investigating
spiral wave chimeras18,22,30,54, and it was found that Ω lin-
early increased with α before reaching a maximum and then
decreasing. The spiral wave chimeras were stable either for
α positive and less than some value18,30,54, or over an interval
bounded away from both zero and π/222. Identified instabili-
ties include Hopf22 and symmetry-breaking54.

In Fig. 11 we show the results of varying α for rotating
waves on an annulus, for n = 1,2,3,4. As with spiral wave
chimeras, Ωn linearly increases with α before reaching a max-
imum and decreasing. For n = 1,2 the waves are stable for α
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FIG. 10. Existence and stability of rotating waves for a fixed inner
radius. Ω is plotted as a function of the outer radius b for rotating
waves with different values of the winding number n. Solid: stable;
dashed: unstable. Parameters: a = 2,δ = 0.01,α = 0.3.
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FIG. 11. Existence and stability of rotating waves as α is varied. Ω

is plotted as a function of α for rotating waves with different values
of the winding number n on a fixed domain. For n = 1,2 the insta-
bility is through a Hopf bifurcation. Solid: stable; dashed: unstable.
Parameters: a = 1,b = 3,δ = 0.01.

less than particular values (α = 1.41 for n = 1 and α = 1.44
for n = 2) while the n = 3,4 waves are always unstable. (They
are stable steady states of (11) but are unstable steady states
of (7).) The n = 1,2 branches become unstable through sub-
critical Hopf bifurcations. For small α , the oscillators are es-
sentially synchronised and Θn(r) is almost constant, i.e. con-
tours of constant phase are close to just radial lines, as for
solutions on a disc30. As α is increased oscillators at the inner
and outer radii become asynchronous. Contours of constant
phase become curved, as seen in Fig. 8(b) and (c). As α ap-
proaches π/2 the solutions collide with the zero solution, a
steady state of (7), whose stability we analyse next.

VI. ZERO SOLUTION

z = 0 is a steady state of (4), and linearising (4) about this
solution we have

∂ z(r,φ , t)
∂ t

=−δ z+ e−iα R/2 (12)

where

R(r,φ , t)=
∫ b

a
s
∫

π

−π

W (r2+s2−2rscosψ)z(s,φ +ψ, t) dψ ds

(13)
Since (12) is linear and we are looking for instabilities to ro-
tating waves we assume a solution of the form z(r,φ , t) =
eλmteimφ νm(r) for m ∈ Z. Using the Gaussian kernel (2) we
have

R(r,φ , t)= eλmteimφ e−r2
∫ b

a
se−s2

νm(s)
∫

π

−π

e2rscosψ eimψ dψ ds

(14)

= 2πeλmteimφ e−r2
∫ b

a
se−s2

νm(s)Im(2rs)ds (15)

Substituting this and the assumed form of z(r,φ , t) into (12)
we obtain

λmνm(r) =−δνm(r)+πe−iα [Gνm](r) (16)

where

[Gη ](r)≡
∫ b

a
se−s2

e−r2
Im(2rs)η(s)ds (17)

Discretising this integral converts (16) into a standard
eigenvalue problem which we can solve numerically, for a
range of values of m. The eigenvalues associated with the
integral operator (17) are real and positive1, so we see that for
α = π/2, all λm have real parts equal to −δ , i.e. the origin
is stable. Decreasing α from π/2 we find that eigenvalues
move into the right half plane, with the right-most one for
m = 0 going first, then the right-most one for m = 1 etc. The
only possibility for having a stable solution branch off the ori-
gin is the m = 0 case, giving rotationally symetric solutions.
This branch is shown in Fig. 12; it quickly becomes unstable
through a symmetry-breaking bifurcation as α is decreased.

When eigenvalues cross into the right half plane their imag-
inary part is just Ω, the speed at which we must rotate the coor-
dinate frame to keep the solutions created in these bifurcations
stationary. Even though the only meaningful values of m are
the integers, we can treat m as a continuous variable and fol-
low the path in the (m,α) plane along which the rightmost λm
lies on the imaginary axis. Plotting Ω as a function of α along
this path we obtain the dotted black curve in Fig. 12, where
the points corresponding to integer values of m are shown with
stars. (The dotted black curve does not continue to the right
of the m = 0 point, as the origin is stable there.) Also shown
in Fig. 12 is Ω for the rotationally symmetric solution (m = 0)
and the curves already shown in Fig. 11 (now using m instead
of n) and we see that these rotating waves are indeed created
in bifurcations from the origin.
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FIG. 12. Bifurcations from the zero solution. Coloured curves: Ω as
a function of α for rotating waves with different values of n (or m).
All but the m = 0 curve are also plotted in Fig. 11. All rotating wave
solutions shown are unstable apart from those on the m = 0 branch
(describing rotationally symmetric solutions) for 1.18 < Ω0 < 1.24.
The dotted black curve is explained in the text. Parameters: a =
1,b = 3,δ = 0.01.
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FIG. 13. Regions of stability of the origin as a (inner radius) and
b− a (width of the annulus) are varied for various values of α . For
a given value of α , the origin is stable below the curve. Instability is
calculated for the m = 0 mode. Parameter: δ = 0.01.

To further understand the stability of the origin we assume
that is becomes unstable via the m = 0 mode and follow this
instability (a purely imaginary eigenvalue) as both a (the inner
radius) and b− a (the width of the annulus) are varied, for
several values of α close to π/2. The results are shown in
Fig 13. We see that only for narrow annuli is the origin stable,
and it goes unstable as either the width is increased, or α is
decreased.

Note that the stability of the origin for a range of parameter
values is a result of having δ ̸= 0, i.e. heterogeneous oscilla-
tors. If δ = 0 we see from (16) that when α = π/2 the λm
are all purely imaginary, and as soon as α is decreased, they

all have positive real part, i.e. the origin is unstable. This is
another example of heterogeneity “unfolding” the degenerate
dynamics which occur for identical oscillators17.

VII. DISCUSSION

We have studied various spatiotemporal patterns that occur
in a network of nonlocally coupled heterogeneous phase oscil-
lators on an annular domain. Using the Ott/Antonsen ansatz
we derived a continuum level description of the dynamics in
terms of the local order parameter z(x, t) ∈ C. Due to the
heterogeneity oscillators are never exactly synchronised, but
differing levels of synchrony in different parts of the domain
correspond to differing values of |z(x, t)|, where the dynam-
ics of z are given by (4)-(5). Some of the patterns seen can
be classified as chimeras, while for others the varying levels
of synchrony are just a result of the domain used. We used a
Gaussian coupling kernel, which allowed some integrals to be
evaluated analytically.

We first considered rotationally symmetric patterns and
then moved to multi-headed chimeras, which are analogous
to those seen on ring domains29. We then considered rotat-
ing waves, analogous to those studied in10, a special case of
which corresponds to a spiral wave chimera30. Through nu-
merical bifurcation analysis we determined ranges of param-
eters for which various solutions are stable, and the bifurca-
tions in which they lose stability. Interestingly, all bifurca-
tions were found to be subcritical. We did follow the multi-
headed chimeras shown in Sec. IV as α was varied and found
curves similar in shape to those in Fig. 11 (i.e. solutions per-
sist down to α = 0); however, these solutions become unstable
as α is decreased (not shown). Thus in keeping with previous
results37, chimeras appear to be stable only for α slightly less
than π/23, while rotating waves, like spiral wave chimeras,
are only stable for small α30. The reasons for this remain un-
clear.

Our analysis is not complete, since even keeping the level
of heterogeneity (δ ) fixed, there are three parameters of inter-
est: the inner and outer radii, and the phase shift α . While
we only discussed spatiotemporal patterns with regular struc-
ture, irregular patterns also exist, and an example is shown in
Fig. 14 for both the continuum equations and the discrete net-
work. The results presented here broaden our understanding
of the possible dynamics of networks of coupled oscillators.

We now discuss possible further work. Networks of theta
neurons have the same mathematical form as networks of si-
nusoidally coupled phase oscillators, so are also amenable to
the use of the Ott/Antonsen ansatz, resulting in equations with
a similar structure to (4)-(5)6,19,34. While these resulting neu-
ral field equations have been considered in one11,19,21,24 and
two6,7 spatial dimensions, we are not aware of any studies
on annular domains. Such studies would complement ear-
lier ones which studied classical neural field equations, of-
ten with a Heaviside nonlinearity, on two-dimensional do-
mains9,25,40,48, and it would be interesting to see if any new
phenomena occur in these “next generation” neural field mod-
els. Preliminary studies of such equations with a Mexican-hat
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FIG. 14. Snapshots showing examples of complex behaviour. (a):
|z| from solving (4). (b): sinθ from solving the discrete model (3).
Parameters: a = 1,b = 4,α = 1.5,δ = 0.01.

coupling function show the existence of solutions like those
in Fig. 4, but with isolated “bumps” of active neurons rather
than regions of high synchrony (results not shown).
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