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We present a two-variable delay-differential-equation model of a pyramidal cell
from the electrosensory lateral line lobe of a weakly electric fish that is capable
of burst discharge. It is a simplification of a six-dimensional ordinary differen-
tial equation model for such a cell whose bifurcation structure has been analyzed
(Doiron et al., J. Comput. Neurosci., 12, 2002). We have modeled the effects of
back-propagating action potentials by a delay, and use an integrate-and-fire mech-
anism for action potential generation. The simplicity of the model presented here
allows one to explicitly derive a two-dimensional map for successive interspike
intervals, and to analytically investigate the effects of time-dependent forcing on
such a model neuron. Some of the effects discussed include ‘burst excitability’,
the creation of resonance tongues under periodic forcing, and stochastic resonance.
We also investigate the effects of changing the parameters of the model.

c© 2002 Society for Mathematical Biology. Published by Elsevier Science Ltd. All
rights reserved.

1. INTRODUCTION

Bursting, in which a cell periodically switches from quiescent behavior to a
rapidly spiking state and back again, is an important and common form of behavior
(Lisman, 1997; de Vries, 1998; Keener and Sneyd, 1998; Rinzel and Ermentrout,
1998; Izhikevich, 2000; Lemon and Turner, 2000). A number of mathematical
models of bursting cells have been developed (Av-Ron et al., 1993; Wang, 1993;
Sivan et al., 1995; de Vries, 1998; Rinzel and Ermentrout, 1998; Doiron et al.,
2002), but they are generally difficult to treat analytically in any detail. Much past
analysis of bursting cells has been influenced by the ‘slow–fast’ separation of time-
scales in bursting systems (Rinzel and Ermentrout, 1998; Izhikevich, 2000), where
it is assumed that fast, spiking variables act on a much shorter time-scale than the
slow variable(s) that are responsible for the shifts between spiking and quiescent
behavior.
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Recently, a new mechanism for burst discharge in pyramidal cells of the weakly
electric fishApteronotus leptorhynchuswas investigated (Doiron et al., 2002).
These cells receive input directly from electroreceptor cells on the fish’s skin, and
are thought to play a significant role in the processing of electrosensory infor-
mation. The model presented inDoiron et al. (2002) was a set of six coupled
nonlinear first-order ordinary differential equations, which was a reduction from
the multicompartment model involving over 1500 variables presented inDoiron
et al. (2001a). This reduction was obtained by lumping the many compartments
into two, representing the soma and the dendrite, and by ignoring the dynamics of
the channels not thought to be important in the mechanism for bursting. That the
model inDoiron et al. (2002) reproduced both the bursting behavior observed in
the model ofDoironet al. (2001a) and experimentally observed bursts (Lemon and
Turner, 2000) indicates that this process was successful.

The model analyzed inDoiron et al. (2002) was studied using the ‘slow–fast’
approach of others (Rinzel and Ermentrout, 1998; Izhikevich, 2000), but it differed
from all previous bursting models in that when the one slow variable was held
constant, the remaining ‘fast’ system did not show bistability for any values of the
slow variable. The bifurcation in the fast system that ended a burst was found to
be a transition from period-one to period-two behavior associated with the failure
of a somatic action potential to induce a dendritic one, and the interburst interval
was found to involve the passage in phase space near a fixed point. Several aspects
of the timing of bursts were found to be related to the distance in parameter space
from a saddle–node bifurcation, hence the name ‘ghostbursting’ (Strogatz, 1994).

In this paper we further reduce the model inDoiron et al. (2002) to a set of
two discontinuous delay differential equations, from which a two-dimensional map
can be derived (assuming constant input current). This gives us analytical insight
into complex soma–dendrite interactions, and is computationally much easier to
study than an ODE model. The reduced model presented here can be constructed
because, as a result of the work inDoironet al. (2002), we understand the essential
ingredients of this type of bursting (refer to Fig.1). A short time after most somatic
spikes, current flows from the dendrite to the soma, producing a depolarizing after-
potential (DAP) at the soma. For large enough current injected to the soma, the
sizes of these DAPs slowly increase due to a slow inactivation of the dendritic
potassium that is responsible for the repolarization of dendritic action potentials.
This results in progressively smaller inter-spike intervals (ISIs), and this process
continues until an ISI is smaller than the refractory period of the dendrite. Once
this happens, there is dendritic spike failure, which removes the normal current
flow to the soma, and a DAP does not appear. This results in a long ISI, during
which the variable controlling inactivation of dendritic potassium increases, and
the sequence starts again. In Fig.1 we show typical bursting behavior from the
model inDoiron et al. (2002). The spike patterning is similar to that seen in the
multicompartment model inDoiron et al. (2001a) and in experimental recordings
(Lemon and Turner, 2000).
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Figure 1. An example of bursting for the 6-variable ODE model ofDoiron et al. (2002).
Top: somatic voltage, middle: dendritic voltage, bottom: dendritic potassium inactivation.
Bursts terminate att approximately 75, 90, 115 and 140. Note the progressively smaller
ISIs during a burst, and the dendritic spike failure at the end of each burst.

If we consider gradually increasing the DC current injected into the soma of such
an actual pyramidal cell, it is observed that the cell’s behavior changes from quies-
cent to periodic firing and then to bursting (Lemon and Turner, 2000; Doironet al.,
2001b). This behavior is also seen in the pyramidal cell models (Doiron et al.,
2001a, 2002) and the model presented later, and is in marked contrast with many
other burst mechanisms for which a cell follows the pattern quiescence, bursting,
tonic, as the current is increased (Terman, 1992; Pinsky and Rinzel, 1994; Rinzel
and Ermentrout, 1998; Steriadeet al., 1998).
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In this paper we also consider periodically modulating the current applied to
the model neuron, and for the case of sinusoidal modulation we obtain a three-
dimensional map for successive spike times. This map can be used to determine the
boundaries in parameter space of resonance tongues, in which the neuron’s firing
frequency is locked to that of the forcing. This map is able to explain some of
the behavior seen inLaing (2002), in which bursting models [including the one in
Doironet al. (2002)] are periodically forced. For example, when only a DC current
is injected into the model neuron ofDoironet al. (2002), there is a value of current
at which the neuron switches from tonic to bursting behavior. However, adding a
sinusoidal modulation to the injected current can either increase or decrease the DC
value of the current where the transition occurs. The amount of increase or decrease
depends on the frequency of the modulation. The simplified model presented here
can also reproduce the phenomenon of ‘burst excitability’ that is explored in more
detail in Laing et al. (2002b), and by varying parameters, the ‘gallery’ of burst
types seen inDoironet al. (2002).

The two-dimensional model that we have developed would be very useful for
large-scale simulations of networks of such neurons as it has fewer variables than
common neuron models that involve ionic channels (Doiron et al., 2002), the dif-
ferential equations involved are not stiff, and its piecewise linear nature aids its
analysis. The way we have modeled backpropagation of an action potential along
a dendrite and the resulting ‘ping–pong’ effect (Wang, 1999) by a discrete delay in
a low-dimensional system is also novel. (The ping–pong effect refers to the inter-
play between somatic and dendritic action potentials and the electrotonic currents
that flow as a result of them not occurring at the same time, nor being of the same
duration.) There has been a great deal of recent interest in backpropagation in
active dendrites (Segev and Rall, 1998; Häusseret al., 2000; Vetteret al., 2001), in
relation to the processing of synaptic inputs and the induction of synaptic plastic-
ity (Johnstonet al., 1996). The modeling of active dendrites presented here could
possibly be applied to these systems in which backpropagation in active dendrites
[or the presence of a second compartment in a two-compartment model (Pinsky
and Rinzel, 1994; Mainen and Sejnowski, 1996; Kepecs and Wang, 2000; Booth
and Bose, 2001)] is important, provided that the effects of the dendrite on the firing
pattern of the soma are understood.

In Section2 we present the model, derive the corresponding map and investi-
gate its properties, including the effects of changing its parameters. In Section3
we present the sinusoidally forced model, derive the corresponding map, and dis-
cuss resonance tongues and stochastic resonance. Section4 is a summary and
discussion. The appendix contains a discussion of other possible models that show
‘ghostbursting’. The point of this is to show that there is not one unique model of
this type of behavior, but rather a variety, each of which has its own advantages and
disadvantages.
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2. THE M ODEL

We use an integrate-and-fire neuron (Keeneret al., 1981) to produce somatic
action potentials (‘spikes’), and couple this with another variable,c, whose behav-
ior mimics the effects of inactivation of dendritic potassium in the model ofDoiron
et al. (2002) [althoughc increases during a burst, while the actual inactivation gat-
ing variable decreases inDoironet al. (2002) (see Fig.1); both trends have the same
effect in their respective models]. The effective delay between a somatic spike and
the appearance of a DAP [a result of the diffusive coupling in voltage between
soma and dendrite inDoironet al. (2002)] is mimicked by an actual delay, and the
effect of the DAP is mimicked by an instantaneous increase in the neuron’s voltage.

The equations are

dV

dt
= I − V + Ac

∑
n

H(tn − tn−1 − r )δ(t − tn − σ) (1)

dc

dt
= −c/τ + (B + Cc2)

∑
n

δ(t − tn) (2)

with the ruleV(t+

n ) = 0 if V(t−

n ) = 1, and thetn are the times at which the
reset occurs (n is an integer).V represents the somatic membrane potential,I is
the current injected to the soma,H(·) is the Heaviside function,r represents the
refractory period of the dendrite,σ is the effective delay between the somatic action
potential and the dendritic-to-somatic current that causes the DAP, andA, B, C and
τ are constants. The action potentials are thought of as occurring at the timestn.

At almost all times,V exponentially approachesI from below with time-constant
1, andc exponentially decays towards 0 with time-constantτ . At each firing time
tn, c is incremented:c 7→ c+ B + Cc2. At a timeσ after firing, and assuming that
the previous ISI,tn − tn−1, is greater than the refractory periodr , V is incremented:
V 7→ V + Ac, wherec is evaluated at a timeσ after firing. If the previous ISI is
less than the refractory period,V is not incremented. Note that the neuron will not
fire if I is always less than 1.

An example of the behavior of (1), (2) is shown in Fig.2. Note the increase
in the overall level ofc and the decrease of ISIs during the burst, and the long
ISI separating bursts. This long ISI is a result of the previous ISI being less than
the refractory period of the dendrite of the neuron, so that no current propagates
from the dendrite to the soma during this ISI. This long ISI can also be seen as the
smallest instantaneous frequency in Fig.3 for I greater than∼1.22. This bursting
behavior is quite robust with respect to changes in parameters.

The model (1), (2) has not been formally derived from any other model, but have
been constructed as a result of understanding the ionic mechanisms behind ghost-
bursting (Doiron et al., 2001a, 2002). As mentioned in the appendix, a number
of equally valid models could be used. It may be possible to construct similar
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Figure 2. Voltage (top) andc (bottom), the variable representing the amount of feed-
back from the dendrite to the soma, as functions of time, illustrating the bursting behavior
of (1), (2). Parameters areI = 1.3, A = 2.3, B = 0.15,C = 2, r = 0.7, σ = 0.4, τ = 1.

models for other types of neurons, provided the interactions between the soma and
dendrites are understood.

We now derive an exact map describing the behavior of (1), (2).

2.1. Derivation of the map. Because of the linearity of (1), (2) for values oft at
which theδ functions are zero, it is possible to derive a map for ISIs and values of
c just after firing. Recall that the solution of (1) whenA = 0 is

V(t) = I + [V(0) − I ]e−t . (3)

Assume thatt = t+

n , V(t+

n ) = 0, c(t+

n ) = cn, andtn − tn−1 > r . [V(t+

n ) is defined
as limε→0 V(tn + ε), whereε > 0.] At a timeσ after t+

n , whenV = I (1 − e−σ )

andc = cne−σ/τ , V is incremented byAcne−σ/τ . Assuming that this does not push
V above 1, i.e., thatI (1 − e−σ ) + Acne−σ/τ < 1, V continues to evolve, reaching
1 after a further times, where

I + [I (1 − e−σ ) + Acne−σ/τ
− I ]e−s

= 1 (4)

(s = 0 whent = tn + σ ). Solving (4) for s we obtain

s = ln

(
Acne−σ/τ

− I e−σ

1 − I

)
. (5)
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Figure 3. Instantaneous frequency (reciprocal of ISI) as a function of input current,I , for
the map (7), (8) (transients have been removed). There is a saddle–node bifurcation of
periodic orbits atI ≈ 1.22. ForI greater than∼1.41 the system alternates between a short
ISI and a long ISI. Parameters areA = 2.3, B = 0.15,C = 2, r = 0.7, σ = 0.4, τ = 1.

Alternatively, if tn − tn−1 < r (i.e., the last ISI was less than the refractory period
of the dendrite, so there is no feedback from dendrite to soma),V will reach 1 after
a time

ln

(
I

I − 1

)
, (6)

measured fromtn. During the interval(tn, tn+1), c exponentially decays with time
constantτ , and is then updated at timetn+1. Thus, taking all possible cases into
consideration, we have a piecewise two-dimensional map for1n+1 ≡ tn+1 − tn and
cn+1 in terms of1n andcn:

1n+1 =


σ if 1n > r and I (1 − e−σ ) + Acne−σ/τ>1 (i )

σ + ln
( Acne−σ/τ

−I e−σ

1−I

)
if 1n > r and I (1 − e−σ ) + Acne−σ/τ<1 (i i )

ln
(

I
I −1

)
if 1n < r (i i i )

(7)

cn+1 = cne−1n+1/τ + B + C[cne−1n+1/τ ]
2. (8)

This is all under the assumption thatI (1 − e−σ ) < 1, i.e., that neitherI nor σ

are too large. If this inequality is not satisfied, e.g., ifI is too large, then1n+1 =

ln [I /(I − 1)] as in case(i i i ) above. As can be seen from (8), the small value of
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1n+1 in this situation may cause the values ofci to increase without bound, an
unphysical situation. Note that we must haveσ < r .

The instantaneous frequency, i.e., 1/1n, is shown as a function ofI in Fig. 3 for
a particular set of parameter values (transients have been removed). A number of
observations can be made:

1. During periodic firing for 1< I <∼ 1.22, case(i i ) in (7) will always be
true. For periodic firing,cn+1 = cn, and thus (8) is a quadratic incn. It can
therefore be solved forcn in terms of the steady-state period,1 (the negative
square root must be chosen). Substituting this into case(i i ) in (7), we obtain
an equation that1 must satisfy:

(1 − I )e−σ e1
=

Ae−σ/τ
[
1 − e−1/τ

−
√

1 − 2e−1/τ + (1 − 4BC)e−21/τ
]

2Ce−21/τ

− I e−σ . (9)

For 1< I <∼ 1.22, equation (9) has two solutions, the larger one of which
is stable (and can be seen in Fig.3; the unstable solution is not shown). The
two solutions coalesce in a saddle–node bifurcation (Kuznetsov, 1995) at
I ∼ 1.22. Note that in (1), (2), this is a saddle–node bifurcation of periodic
orbits. Interestingly, it was a saddle–node bifurcation of periodic orbits that
separated periodic from bursting behavior in the full ionic ODE model in
Doiron et al. (2002). As I → 1 from above, the largest root of (9) tends to
∞, corresponding to the frequency tending to zero. Note that ifτ = 1, (9) is
independent ofσ .

2. For I greater than∼1.22, the smallest instantaneous frequency occurs bet-
ween bursts, where the only current driving the neuron during its entire
period is I . Thus the lower curve in Fig.3 for I greater than∼1.22 is just
1 = ln [I /(I − 1)] [case(i i i ) in (7)].

3. For I greater than∼1.22, the ‘band’ of frequencies in Fig.3 not including
the interburst interval is bounded below by the curve

1 = σ + ln

(
ABe−σ/τ

− I e−σ

1 − I

)
(10)

sincecn has a minimum value ofB after being reset at the end of the inter-
burst interval. [Expression (10) is obtained by settingcn = B in (7) (i i ).]

4. For I greater than∼1.45, the map alternates between cases(i ) and (i i i )

in (7), so only the longest1n is a function ofI . Note that forI greater than
∼1.41 the system alternates between a long ISI and a short ISI, which can
be thought of as periodically firing ‘doublets’.

5. The progression quiescence→ periodic firing → bursting→ alternating
short and long ISIs asI is increased as seen in Fig.3 is also seen in the
models ofDoironet al. (2001a, 2002), and experimental recordings (Lemon
and Turner, 2000; Turner, 2002).
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In relation to point 1 earlier, if the positive square root is taken instead and sub-
stituted into case(i i ) in (7), the roots of the resulting function may not satisfy the
condition1 > r associated with case(i i ), and thus they will not be actual fixed
points of the map. Also, the fact that (8) can be solved explicitly for the steady-state
value ofc is a result of our choice of the dynamics ofc, (2). Replacing the term
Cc2 in (2) by Cc would mean that the equation for the steady state ofc was linear
and thus had only one solution; this choice would also simplify the expression (9),
but would make chaotic behavior more difficult, although not impossible, to obtain
(see later).

2.2. Lyapunov exponent.The Lyapunov exponents of a trajectory determine its
stability and the behavior of nearby trajectories. If a stable solution has at least one
positive Lyapunov exponent, the system will exhibit sensitivity to initial conditions,
and nearby trajectories will typically separate exponentially in time (Drazin, 1992).
For a range of current values, the bursting behavior inDoiron et al. (2002) was
shown to have a positive Lyapunov exponent, and thus be chaotic.

To find the maximal Lyapunov exponent,λ, for a trajectory of the map (7), (8),
we analytically calculate the Jacobian,D f , of (7), (8) and evaluate it at each point
on the orbit,x1, x2, . . . , wherexi = (1i , ci ) ∈ R2. If qi is the largest magnitude
eigenvalue ofD f (xi ) thenλ can be calculated (Drazin, 1992) from

λ = lim
n→∞

1

n

n∑
i =1

ln |qi |. (11)

This quantity is shown in Fig.4, multiplied by four for clarity, together with instan-
taneous frequency. Note the transition from period-1 firing to chaotic bursting at
I ∼ 1.22, and the long-period quasiperiodic behavior forI greater than∼1.32.

2.3. Effects of parameters.The model (1), (2) has six parameters that are regar-
ded as constant (A, r, σ, τ, B andC). We now briefly discuss the effects of chang-
ing each of these. In more realistic models (Doiron et al., 2001a, 2002), changing
parameters can mimic the application of drugs that selectively block various ionic
channels [e.g., tetrodotoxin is a Na+ channel blocker (Lemon and Turner, 2000)],
or the dynamic modulation of channel properties by the fish itself. While the rela-
tionships between the six parameters discussed here and the many parameters of
more realistic neurons are not yet known, knowing how changes in them affect the
model’s behavior is still of interest (see later).

• A mimics the size of the current flowing from dendrite to soma, and thus
the size of the DAP and how much it contributes towards moving the soma
to spike threshold. Thus increasingA will make the neuron more likely to
burst.

• r is irrelevant during periodic firing [note that (9) is independent ofr ], so
changing it cannot switch the neuron from periodic to bursting or vice versa.
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Figure 4. Instantaneous frequency and four times the most positive Lyapunov exponent(λ),
as a function of input current,I , for the map (7), (8). Parameters are as in Fig.3.

However, decreasingr makes the bursting more likely to be chaotic. This
is becausec can now reach a larger value at the end of a burst before it is
terminated, and it is the nonlinear growth ofc at the end of the burst that is
the source of the chaos. However, ifc can take on large values at the end of
a burst, there may not be time during the interburst interval forc to decay
sufficiently before the beginning of the next burst, and this can lead to an
unphysical ‘blow-up’ inc. Note thatr must be greater thanσ .

• τ governs the rate of decay ofc. Whether the neuron fires periodically or
bursts depends on the balance between the decay ofc between spikes and the
increment inc at each spike. As seen from (8), increasingτ causesc to decay
more slowly, making the neuron more likely to burst. Note from (1), (2) that
the time-constants governing the dynamics ofV andc are 1 andτ , respec-
tively, and that it is possible for bursting to occur withτ < 1 (not shown).
This is in contrast to the usual analysis of bursting, where there is assumed to
be a separation between the fast spiking dynamics and the slower dynamics
that control the burst length and interburst intervals (Rinzel and Ermentrout,
1998; Izhikevich, 2000).
Also, as inDoironet al. (2002), there is a range ofτ values for which burst-
ing is seen asI is varied. Ifτ is too small,c decays too much between action
potentials, and the slow growth during a burst does not occur. Similarly, ifτ

is too large,c cannot decay between bursts and the successive maxima ofc
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grow extremely quickly. This leads to ‘doublet’ firing inV and an eventual
breakdown of the algorithm.

• For the parameters used, ifτ > 1, increasingσ makes the neuron more likely
to burst and vice versa. Ifτ < 1, increasingσ makes the neuron less likely
to burst, and vice versa. This can be understood graphically by writing (9)
as

e−σ f (1) = Ae−σ/τ g(1, τ) (12)

where

f (1) = I + (1 − I )e1 (13)

and

g(1, τ) =
1 − e−1/τ

−
√

1 − 2e−1/τ + (1 − 4BC)e−21/τ

2Ce−21/τ
. (14)

For a givenτ and other parameters in the appropriate range,f (1) is a
concave-down function of1, andg(1, τ) is a concave-up function of1.
They are both positive in the region of interest. The intersections of the left
and right sides of (12) give the values of1 at the two periodic orbits (one
stable and the other unstable) of (1), (2). It is the coalescence of these in a
saddle–node bifurcation that marks the transition from periodic to bursting
behavior.
If τ > 1, increasingσ decreases the left-hand side of (12) more than it
decreases the right-hand side, bringing the two points of intersection closer
to one another, and thus lowering the value ofI at which the saddle–node
bifurcation occurs. Conversely, ifτ < 1, increasingσ decreases the right-
hand side of (12) more than it decreases the left-hand side, moving the two
points of intersection further apart and thus increasing the value ofI at which
the saddle–node bifurcation occurs.

• B andC both control the increment inc at each spike, so increasing either
will make the neuron more likely to burst. TheCc2 term is not strictly nec-
essary to obtain bursts, as we can produce a plot like Fig.3 with C = 0
(although the bursts are then periodic, not chaotic). However, without this
nonlinear term it is difficult to obtain chaotic bursts. This is because it is
the nonlinear growth ofc at the end of a burst, and the fact that the largest
value ofc during a burst is carried over to the start of the next burst, that
cause chaotic dynamics to occur. IfB = 0 thencn = 0 for all n is a possible
solution of (8), and having a nonzero value ofB prevents this.

This knowledge is useful, since if we can determine the qualitative relationship
between parameters in a more realistic model of this cell [e.g., the models inDoiron
et al. (2001a, 2002)] and the six parameters earlier, we can understand how chang-
ing the parameters in the more realistic models will change the behavior of the cell,
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without having to simulate those more detailed models. To determine these rela-
tionships, one would need to know the effects of changing a particular parameter
in a large model on one or more of the six parameters discussed earlier.

As an example, it was found inDoironet al. (2002) that decreasing the maximum
conductance of the dendritic potassium decreased the value of current injected to
the soma at which the cell switched from tonic to bursting, i.e., it made the cell
more likely to burst. This is easy to understand, since it is dendritic potassium that
is responsible for repolarizing the dendrite, and by lessening its effect the dendritic
action potential is widened, leading to a larger DAP at the soma. Thus, decreasing
this conductance is equivalent to increasingA in (1), (2). By the same reasoning,
decreasing the maximum conductance of the somatic potassium in the model of
Doiron et al. (2002) is equivalent to decreasingA, making the cell less likely to
burst. A similar result regarding the effects of changing the somatic-to-total area
ratio (Lainget al., 2002a) can be explained in a similar way.

One of the parameters in actual pyramidal cells that is thought to change over
time is the contribution of slow voltage-activated persistent sodium in the dendrite
(Doiron et al., 2001b). This becomes relevant when a cell is depolarized for a
long time (of the order of 1 s). Another parameter that is thought to change on a
relatively fast time-scale (although still much more slowly than the time-scale of
action potential production) is the maximum conductance of dendritic potassium,
whose kinetics are subject to second messenger regulation (Turner, 2002). Thus,
making the link between parameters in real or realistic model neurons and the six
parameters of the model presented here will increase the usefulness of this model.

2.4. Burst excitability. ‘Burst excitability’ (Lainget al., 2002b) is a type of exci-
tability analogous to ‘normal’ excitability (Glass and Mackey, 1988; Gutkin and
Ermentrout, 1998; Rinzel and Ermentrout, 1998; Segev and Rall, 1998; Izhikevich,
2000), except that the ‘event’ that follows a sufficiently strong transient excitation
is a burst rather than a single action potential, and the system may return to periodic
firing after a burst, rather than quiescence.

The presence of a saddle–node bifurcation of fixed points of the map (7), (8)
marking the transition between periodic and burst behavior implies burst excitabil-
ity at this boundary (Lainget al., 2002b). For a value ofI less than that at the bifur-
cation, a temporary step increase inI may induce a burst in which the firing rate is
elevated from its prior value for a time greater than the duration of the increase inI .
If the magnitude of the increase inI is not sufficient, or its duration is too short, a
burst will not be observed. Such behavior is shown in Fig.5. Note that the length of
the burst in Fig.5, top, (i.e., the time between the perturbation ofI and the doublet
marking the end of the burst) is about four times the length of the longest time con-
stant in the system(τ = 1). The recovery from the perturbation in Fig.5, bottom,
is even longer. (There is no bistability in the system, and the long period of higher
firing frequency is a result of the perturbation pushing the system very close to an
unstable periodic orbit.) This reinforces the idea presented inDoiron et al. (2002)
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Figure 5. Burst excitability for the system (1), (2). I was set to 1.5 for 4 < t < 4.8 for the
top two panels, and 1.45 for 4< t < 4.8 for the bottom two panels.I = 1.21 otherwise.
In the top two panels a burst is induced, and in the lower two no burst is induced. Note that
there is no bistability in the system, and that the slow recovery after the perturbations is due
to the system being pushed close to an unstable periodic orbit. Parameters areA = 2.3,
B = 0.15,C = 2, r = 0.6, σ = 0.4, τ = 1.

that ‘slow’ behavior in a bursting system does not necessarily imply the existence
of a slow time-scale in the form of an explicit long time-constant, but can be the
result of the system’s trajectory in phase space passing close to the stable manifold
of an unstable object (e.g., a fixed point or periodic orbit).

This form of burst excitability has been seen in the model presented inDoiron
et al. (2002). Since the pyramidal cells we are modeling receive sensory input
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directly from electroreceptors on the fish’s skin (Nelsonet al., 1997; Chacronet al.,
2001), burst excitability may be a robust way of signaling a transient increase in
the strength of the electric field at those electroreceptors caused by, for example, a
‘chirp’ emitted by another fish (Zupanc and Maler, 1993).

2.5. A ‘gallery’ of bursts. We know for the system (1), (2) that the current
threshold for spiking isI = 1, and that the length of an interburst interval is
given by1 = ln [I /(I − 1)], which tends to infinity asI tends to 1 from above.
Also, since the bifurcation separating periodic from bursting behavior is a saddle–
node bifurcation of periodic orbits, standard results regarding type-I intermittency
(Pomeau and Manneville, 1980) show that the number of spikes in a burst scales as

N ∼
1

√
I − Isn

(15)

as I tends toIsn from above, whereIsn is the value ofI at which the saddle–node
bifurcation occurs (∼1.22 in Fig.3). [Type-I intermittency may occur when there
is a saddle–node bifurcation of periodic orbits in a system, i.e., a stable and unsta-
ble periodic orbit collide as a parameter is varied. Just after the two orbits have
collided there is a ‘trapping region’ in phase space where the system’s behavior is
almost periodic. The amount of time spent in this region scales as the reciprocal of
the square-root of the distance in parameter space from the bifurcation, hence the
expression (15).]

The value ofIsn depends on the other parameters in the system, but if we can
change them so thatIsn moves relative to the spiking threshold of 1 (and in partic-
ular, if we can make it approach 1), then we will be able to obtain a wide variety of
different burst lengths and interburst intervals, as was done inDoironet al. (2002).
In Fig. 6 we show such a situation, where we have chosen to vary the parameterB.
We can see that the curve separating periodic from burst firing touches the curve
separating quiescence from periodic firing (the lineI = 1) nearB = 0.42. This is
similar to the situation inDoiron et al. (2002), where the maximum conductance
of dendritic potassium was varied. Note that the curve in this figure can be found
numerically from (9) by determining the value ofI as a function ofB at which the
two roots of (9) coalesce; the map, (7), (8), does not have to be iterated.

By choosing different points in Fig.6 we can obtain different bursts—this is
shown in Fig.7. In the top panel, we are close to the curve of saddle–node bifur-
cations of periodic orbits, but far fromI = 1. Hence the bursts are long (cf. those
in Fig. 2) but the interburst interval is not particularly so. In the middle panel, we
are close to the codimension-two point in Fig.6 (marked with a circle), so both
the bursts and the interburst intervals are long. In the bottom panel we are to the
right of the codimension-two point in Fig.6, and [as was observed inDoironet al.
(2002)] we observe doublets, i.e., a small ISI followed by a larger one. This is
easily understood, since the first spike induces a large DAP (large becauseB is
large) which induces a second spike. This second one marks the end of an ISI that
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Figure 6. The curve of saddle–node bifurcations of periodic orbits (solid) and the threshold
for firing (dashed), as a function ofB. Other parameters are the same as in Fig.3. The two
curves meet at a codimension-two point, marked with a circle. The labels refer to the types
of behavior that occur within each region of parameter space.

is within the refractory period of the dendrite, so no DAP arrives after it and a long
ISI is produced (long becauseI is close to 1).

It is possible that the bursts produced by these cells are of most interest, rather
than the individual spikes within them (Lisman, 1997). Thus being able to change
both the number of spikes in a burst and the length of the interburst interval, as we
have just done, may be very important with respect to changing the information
content of the output of such a cell (Doironet al., 2002).

One difference between the model (1), (2) and the ODE model ofDoiron et al.
(2002) involves the scaling of the interburst intervals asI decreases. The bifurca-
tion separating quiescence from periodic firing inDoironet al. (2002) is a saddle–
node-on-a-circle bifurcation (Kuznetsov, 1995), and hence the period of periodic
firing scales asT ∼ 1/

√
I − I ∗, where I ∗ is the value of the current at which

the transition takes place. This is in contrast with the1 = ln [I /(I − 1)] expres-
sion for the integrate-and-fire mechanism that we are using in (1), (2) to produce
action potentials. Thus in the interburst intervals, where there is essentially no
current flowing from the dendrite to the soma and the soma is driven by only the
current injected into it from the outside, the length of the interburst intervals will
scale differently with current for the two models. However, both scalings give the
same qualitative result, i.e.,T → ∞ as I → I ∗ from above, and1 → ∞ as
I → 1 from above. The scaling in (1), (2) could be made to match the scaling in
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Figure 7. Example bursts of (1), (2) for three different(I , B) pairs. Top: (I , B) =

(1.23, 0.15), middle: (I , B) = (1.007, 0.37), bottom: (I , B) = (1.007, 0.5). See Fig.6.
Other parameters are the same as in Fig.3. Note that the horizontal axes all have the
same scale.

Doironet al. (2002) if the spike-producing neuron was one whose bifurcation sep-
arating quiescence from periodic firing was a saddle–node-on-a-circle bifurcation;
one example is the ‘theta neuron’ (Gutkin and Ermentrout, 1998), but its nonlin-
earity would complicate analysis of the resulting bursting model.

3. SINUSOIDAL FORCING

The response of dynamical systems to periodic forcing is a widely studied prob-
lem. Examples with biological motivation includeGuevaraet al. (1981); Keener
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et al. (1981); Glass and Mackey(1988); Glass(1991); Coombes and Bressloff
(1999); Smithet al. (2000); Coombeset al. (2001). We will now consider the sit-
uation whereI in (1) is sinusoidally modulated. The modulation has amplitude
0 and angular frequencyω. This form of forcing is relevant for the following rea-
sons. Wave-type weakly electric fish, e.g.,A. leptorhynchus, continuously generate
an approximately sinusoidal modulation of the electric field surrounding them via
their electric organ discharge (EOD). The frequency of this oscillation can be as
high as 1200 Hz and is essentially constant for any particular fish. Males have
higher frequencies than females. When two fish are physically close, the differ-
ence in EOD frequencies gives rise to a ‘beat’ frequency, equal to the difference
between the two EOD frequencies. Thus there are at least two types of sinusoidal
inputs (the fish’s own EOD and the beating oscillation) that may be detected by
electroreceptors on the fish’s skin (Nelsonet al., 1997; Chacronet al., 2001) and
passed to the pyramidal cells that we are modeling.

We will now derive a map similar to (7), (8) for the case whereI in (1) is sinu-
soidally modulated. Since the dynamics are no longer invariant with respect to
time translation, we find that they can only be reduced to a three-dimensional map,
rather than a two-dimensional one as earlier.

Assume thatt = t+

n , V(t+

n ) = 0, c(t+

n ) = cn, and thattn − tn−1 > r . V evolves
under

dV

dt
= I − V + 0 sin(ωt) (16)

which has the solution

V(t; tn) = I
[
1 − e−(t−tn)

]
+

(
0

1 + ω2

)
{sin(ωt) − ω cos(ωt)}

−

(
0e−(t−tn)

1 + ω2

)
[sin(ωtn) − ω cos(ωtn)]. (17)

Note that this satisfiesV(tn; tn) = 0. At a timeσ aftertn,

V = V ≡ I (1 − e−σ ) +

(
0

1 + ω2

)
{sin[ω(tn + σ)] − ω cos[ω(tn + σ)]}

−

(
0e−σ

1 + ω2

)
[sin(ωtn) − ω cos(ωtn)] (18)

andc = cne−σ/τ . (We assume thatV(t; tn) < 1 for tn < t ≤ tn + σ .) V is now
incremented by an amountAcne−σ/τ . If V + Acne−σ/τ > 1, i.e., if this increment
pushesV over the threshold for firing, thentn+1 = tn + σ . If this is not the case,
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we need to solve (16) with V(tn + σ) = V + Acne−σ/τ . This has the solution

V(t; tn, cn) = I +

(
0

1 + ω2

)
[sin(ωt) − ω cos(ωt)]

+ e−(t−tn−σ)

[
V + Acne−σ/τ

− I −

(
0

1 + ω2

)
{sin[ω(tn + σ)]

− ω cos[ω(tn + σ)]}

]
(19)

= I +

(
0

1 + ω2

)
[sin(ωt) − ω cos(ωt)]

+ e−(t−tn−σ)

[
Acne−σ/τ

− I e−σ
−

(
0e−σ

1 + ω2

)
[sin(ωtn)

− ω cos(ωtn)]

]
(20)

andtn+1 is the smallest solution greater thantn of

V(tn+1; tn, cn) = 1. (21)

All of the above is under the assumption thattn − tn−1 > r . If tn − tn−1 < r , i.e.,
there is no current flowing from the dendrite to the soma, then from (17), tn+1 is
the smallest solution (greater thantn) of

1 = I
[
1 − e−(tn+1−tn)

]
+

(
0

1 + ω2

)
[sin(ωtn+1) − ω cos(ωtn+1)]

−

(
0e−(tn+1−tn)

1 + ω2

)
[sin(ωtn) − ω cos(ωtn)]. (22)

During the time interval(tn, tn+1), c decays exponentially with time-constantτ .
Thus we have a piecewise map fortn+1 andcn+1 in terms oftn, tn−1 andcn:

tn+1 =


tn + σ if tn − tn−1 > r andV + Acne−σ/τ > 1
min{s > tn : V(s; tn, cn) = 1} if tn − tn−1 > r andV + Acne−σ/τ < 1
min{s > tn : 3(s; tn) = 1} if tn − tn−1 < r

(23)

cn+1 = cne−(tn+1−tn)/τ
+ B + C

[
cne−(tn+1−tn)/τ

]2
(24)

where3(s; tn) = V(s; tn) andV(s; tn) is given by (17), andV(s; tn, cn) is given
by (20).
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We can write the map (23), (24) as

tn+1 = f (tn, tn−1, cn) (25)

cn+1 = g(tn+1, tn, cn) = g( f (tn, tn−1, cn), tn, cn) ≡ h(tn, tn−1, cn) (26)

or

tn+1 = f (tn, sn, cn) (27)

sn+1 = tn (28)

cn+1 = h(tn, sn, cn) (29)

i.e., a map fromR3 to R3, where

g(a, b, c) = ce−(a−b)/τ
+ B + C

[
ce−(a−b)/τ

]2
(30)

and f is given by (23).
Note that when0 = 0, min{s > tn : V(s; tn, cn) = 1} has the solution

s = tn + σ + ln

(
Acne−σ/τ

− I e−σ

1 − I

)
(31)

and min{s > tn : 3(s; tn) = 1} has the solutions = tn + ln [I /(I − 1)], and
the map (23), (24) reduces to (7), (8), which only involves time differences, as is
expected from a time-translationally invariant system. The nonzero amplitude of
forcing in (16) breaks this invariance. Note also that the map (27)–(29) has no
fixed points, as the variabless and t denote firing times, not ISIs. The maximal
Lyapunov exponent for (27)–(29) can be calculated in a similar way to that for the
two-dimensional map (7), (8) (see Section2.2).

3.1. Arnold tongues. Much work has been done on periodically forced oscilla-
tors (Guevaraet al., 1981; Glass and Mackey, 1988; Glass, 1991; Coombes and
Bressloff, 1999), and it is well-known that an oscillator can become entrained to
the frequency of the forcing. This may be of relevance for the model we are con-
sidering, since (as mentioned earlier) the pyramidal cells that we are modeling
receive direct afferent input from electroreceptors on the fish’s skin. This input has
periodic components, and if a pyramidal cell was entrained to its inputs, it could
faithfully track that frequency over some range. Periodically moving between the
tonic state and a bursting state (so that, e.g., a burst always terminated at a fixed
phase of the input) may also be a mechanism for robustly signaling a periodically
changing input.

Regions of parameter space in which the frequency of the forcing and the fre-
quency of the forced oscillator have a particular ratio are called ‘Arnold tongues’
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(Glass, 1991), and are labeled by the ratio of frequencies, e.g., 3 : 2. (For this
example, the oscillator would pass through two cycles in the same time that the
forcing signal took to pass through three cycles.) The system (1), (2) is capable
of periodically oscillating for some values of its parameters and input, so under
periodic forcing we expect it to have some features in common with periodically
forced oscillators. However, the presence of the bifurcation separating periodic
from burst firing in the unforced system may mean that new features appear when
it is periodically forced.

Consider the case ofq : 1 locking, where we have one firing during a period of
qT (ω = 2π/T), i.e., duringq forcing cycles. For this case,cn+1 = cn, so letc∗

be the smallest root of

cn = cne−qT/τ
+ B + C

[
cne−qT/τ

]2
. (32)

We can see from (20) that in this periodically-locked state

1 = I +

(
0

1 + ω2

)
[sin(ωtn+1) − ω cos(ωtn+1)]

+ e−(tn+1−tn−σ)

[
Ac∗e−σ/τ

− I e−σ
−

(
0e−σ

1 + ω2

)
[sin(ωtn) − ω cos(ωtn)]

]
.

(33)

Noting that for this locked state

sin(ωtn+1) − ω cos(ωtn+1) = sin(ωtn) − ω cos(ωtn) (34)

and defining the firing phase in a similar way toCoombes and Bressloff(1999) as

φn = ω

(
tn − T int

[
tn
T

])
, 0 ≤ φn < 2π (35)

where int[x] is the integer part ofx, we see that we can rewrite (33) as

1 = I +(1−e−qT)

(
0

1 + ω2

)
[sinφn−ω cosφn]+e−(qT−σ)

[Ac∗e−σ/τ
−I e−σ

] (36)

wherec∗ is the smallest root of (32). Regardingφn as a variable, equation (36)
typically has either zero or two roots, and if it has two, they are destroyed in a
saddle–node bifurcation as a parameter is varied. These saddle–node bifurcations
mark the edge of theq : 1 tongue in parameter space, and aq : 1 orbit can only exist
within such a tongue.
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Combining the two terms involvingφn, equation (36) can be rewritten as

1 − I − eσ−qT
[Ac∗e−σ/τ

− I e−σ
] = (1 − e−qT)

(
0

√
1 + ω2

)
sin(φn − tan−1 ω).

(37)
The saddle–node bifurcations occur when

φn = π/2 + tan−1 ω or φn = 3π/2 + tan−1 ω (38)

at which point the right-hand side of (37) is

0(1 − e−qT)
√

1 + ω2
or −

0(1 − e−qT)
√

1 + ω2
, (39)

respectively. Using this and rearranging (37) we see that the two values ofI
between whichq : 1 orbits exist are

I =
1 − Ac∗e−σ/τ eσ−qT

1 − e−qT
±

0
√

1 + ω2
. (40)

As an example, in Fig.8 we show the boundaries of the 1 : 1 tongue, calculated
using (40). This expression only gives the region in parameter space where such
orbits exist, but says nothing about their stability. Forω less than∼6.5, there
always appears to be an orbit which is stable between the saddle–node bifurcations
that mark the edges of the tongues, but forω greater than∼6.5, the 1 : 1 orbit can
lose stability through a Hopf bifurcation (dashed curve in Fig.8). This is a Hopf
bifurcation of a periodic orbit in the continuous system (1), (2) and corresponds to
the creation of a 2-torus. This bifurcation is subcritical (Drazin, 1992; Kuznetsov,
1995), and one consequence of that is the bistability of the periodically-forced
system, at least in some neighborhood to the left of this dashed line, as shown in
Fig.9. In this figure we show the behavior for 6.8 < ω < 7.3 whenI = 1.22, i.e., a
cut through the Hopf bifurcation in Fig.8. The coexistence of at least two attractors
(one of which is the 1 : 1 locked orbit) for some range ofω values is clearly seen.
This bistability has also been observed in the periodically forced six-dimensional
model (Laing, 2002).

[To find the curve of Hopf bifurcations, 1 : 1 phase-locked solutions of (27)–(29)
were found by solving

(φ + 2π)/ω = f (φ/ω, (φ − 2π)/ω, c) and

c = h(φ/ω, (φ − 2π)/ω, c) (41)

for φ ∈ [0, 2π) (the phase of the forcing cycle at which the neuron fires) andc,
where f and h are given by (27) and (29), respectively. The stability of these
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Figure 8. Boundaries of the 1 : 1 tongue from (40) (solid line) for the map (27)–(29). The
dashed line indicates the curve of subcritical Hopf bifurcations.0 = 0.2, other parameters
are as in Fig.3.

solutions was then determined by evaluating the eigenvalues of a numerically-
determined approximation of the Jacobian of (27)–(29) at the corresponding
points.]

This process of finding the boundaries of resonance tongues can be carried out for
other frequency ratios, but the resulting equations are more complicated. Note that
this procedure is not affected by the presence of the periodic→ bursting boundary
in parameter space. A similar observation was made inYoshino et al. (1999),
where the authors studied a periodically forced Fitzhugh–Nagumo system as the
underlying dynamics changed from excitable to oscillatory. Note also that Fig.8 is
by no means a complete description of the dynamics, as there are an infinite number
of resonance tongues in this parameter space, each labeled by the pairp : q, where
p andq are positive integers.

Recall from Fig.4 that when no forcing is applied, the system moves from peri-
odic firing to bursting atI ≈ 1.22. Referring to Fig.8, we see that periodic forcing
canincreasethe value of the DC component of the applied current at which the sys-
tem starts to burst, e.g., atω = 6, as shown in Fig.10 (top). Here, the 1 : 1 tongue
straddles the value ofI at which the unforced system starts to burst, and the system
starts bursting at the boundary of the tongue. Conversely, sinusoidal modulation
can alsodecreasethe value of the DC component of the applied current at which
the system moves to bursting, e.g., atω = 7.15, as shown in Fig.10 (bottom).
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Figure 9. Bistability for the map (27)–(29) when I = 1.22 (cf. Fig.8). The top panel
shows iterates of the map, while the bottom one shows the 1 : 1 locked solution and its
stability, for exactly the same parameter values (the 1 : 1 solution loses stability through
a subcritical Hopf bifurcation—see text). Note that for∼6.88 < I <∼ 7.08, there is
evidence of bistability, as the attractor in the top panel is not the same as that in the bottom
panel. Parameters are as in Fig.8.

Note that this decrease in threshold could not be predicted from looking at Fig.8,
since the transition into bursting for this value ofω does not involve leaving the 1 : 1
tongue. Thus the effective ‘burst threshold’ can be either increased or decreased,
depending on the frequency of forcing, as was observed inLaing(2002). This phe-
nomenon of shifting the effective threshold has not yet been observed with actual
pyramidal cells, but should be straightforward to verify.

3.2. Stochastic resonance.Stochastic resonance is the phenomenon whereby
moderate amounts of noise, when added to a system that has a subthreshold input
signal, cause the signal to be observable in the system’s output (Gammaitoniet al.,
1998). For small noise intensities the signal cannot be observed, as it is subthresh-
old, and for high intensities the system’s output is swamped by the noise, so if the
signal to noise ratio at the output is plotted as a function of noise intensity, it will
show a maximum at some moderate value of noise intensity.

We have already derived a map, (27)–(29), for the sinusoidally forced system (1),
(2), and we can use this to show stochastic resonance in (1), (2), since it already
incorporates a signal—the sinusoid. One choice of modeling the effect of noise is
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Figure 10. Instantaneous frequency (dots) and the maximal Lyapunov exponent (solid line)
as a function ofI for ω = 6 (top) andω = 7.15 (bottom). See Fig.8. With no periodic
forcing the system shows bursts forI greater than∼1.22, so depending on the frequency
of forcing, periodic forcing can either increase (top) or decrease (bottom) the value ofI at
which the transition to bursting occurs.0 = 0.2, other parameters are as in Fig.3.

to replace (29) by

cn+1 = h(tn, sn, cn) + εθn (42)

where theθn are chosen from a normal distribution with mean zero and standard
deviation 1. This noise could be due to, for example, the probabilistic nature of the
opening and closing of ion channels on the neuron being modeled, or the stochastic
nature of synaptic transmission from presynaptic neurons. The parameterε con-
trols the noise intensity.
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In order to quantify the signal to noise ratio, we need to choose which aspect of
the system (1), (2) is to be considered as the output. As was done inLaing (2002),
we use the high-frequency ‘doublets’ that occur at the end of a burst. These could
be detected preferentially by, for example, a synapse with facilitation that acts
over a doublet ISI, but not over a typical ISI involved in periodic firing. High
frequency doublets have been linked to synchronization and communication over
long distances in the brain (Traubet al., 1996; Ermentrout and Kopell, 1998). It has
also been suggested that bursts (whose presence would be signaled by a doublet, in
this example) rather than spikes may be the important unit of information in neural
communication (Lisman, 1997).

Thus for a set ofN iterates of (27), (28) and (42) we define the output signal to
be

f (t) =

∑
j

δ(t − ν j ) (43)

where

{ν j } = {ti : ti − ti −1 < ρ}
N
i =2 (44)

so f (t) consists of a sum of delta functions at the times of the second spike in a
pair whose ISI is less thanρ. Passingf (t) through a Hanning window (Presset al.,
1992) defined over the interval[t1, tN] and taking the Fourier transform we have

F(ω) =
1

2

∑
j

ei ων j

[
1 − cos

(
2πν j

tN − t1

)]
(45)

and the power spectrum is|F(ω)|2. An example is shown in Fig.11for ρ = 0.6 and
N = 3000 (the results of five realizations have been averaged). A clear increase
in power at the driving frequency(ω = 0.1) is seen asε increases, but if it is
increased too far, more power appears at nearby frequencies. This is quantified
in Fig. 12, where we have plotted the ratio of the power at the driving frequency
(0.1) to the average of the power in the range(0.07, 0.09)

⋃
(0.11, 0.13). This

signal to noise ratio clearly increases and then decreases as the noise intensity,ε,
increases, a characteristic of stochastic resonance. This behavior is also seen if
the full system, (1), (2), is simulated with Gaussian white noise added to either
the dynamics ofV , or the dynamics ofc (not shown). Thus the noise present in
this particular neural system may actually enhance the transmission of information
from the fish’s environment to its higher brain centers.

4. SUMMARY AND DISCUSSION

We have presented and analyzed a two-variable delay-differential equation model
for a pyramidal cell in the electrosensory lateral line lobe of a weakly electric fish.
We have concentrated on the ‘bursting’ behavior seen in these cells. The model was
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Figure 11. The power spectrum of (27), (28) and (42) as defined in (43)–(45) for ε =

e−6 (dashed),ε = e−4 (solid) andε = e−2 (dash–dotted). Other parameter values are
I = 1.21, A = 2.3, B = 0.15, C = 2, σ = 0.4, τ = 1, r = 0.6, 0 = 0.02, ω = 0.1.
The spectra result from averaging over five noise realizations withN = 3000. Note that
I = 1.21 is just below the bifurcation separating periodic from burst firing (see Fig.3).

a simplification of the six variable ODE model presented inDoiron et al. (2002),
which was itself a drastic simplification of the multicompartment model ofDoiron
et al. (2001a). The simplicity of our model has allowed us to derive a two-variable
map for firing times of the model neuron, and to determine how the model’s behav-
ior depends on its parameters.

We have also considered the effects of sinusoidal forcing on the model neuron,
and have derived a three-variable map for firing times. This map has allowed us
to analytically determine the boundaries of phase-locked regions (Arnold tongues)
and, by adding noise to the three-variable map, to demonstrate stochastic resonance
in the model. The existence of these maps drastically decreases the computational
effort of simulating the model neuron presented here, which is in turn easier to
simulate than the larger models ofDoironet al. (2001a, 2002).

The cell we have modeled is of interest for several reasons. It receives sensory
input directly from electroreceptors, and its output spike patterns are thought to
encode most, if not all, of the information received by the fish about its environ-
ment. The threshold between tonic and burst firing as the input current is increased,
and the variety of burst patterns produced (see Section2.5), may both be utilized
by the fish in processing this information before it is sent to higher brain regions.
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Figure 12. The signal to noise ratio of (27), (28) and (42) as defined in (43)–(45) as a
function of ε. Parameters are as in Fig.11. The dashed lines indicate± one standard
deviation.

This reduced model is of use because of its simplicity. Computationally it is
much simpler to simulate than ionic models, and it also has fewer parameters that
can be varied. Because of our understanding of the mechanisms we are modeling
(Doiron et al., 2001a, 2002) we have been able to preserve the essential features
of bursting in the model presented here. Once the effects of changing physical
parameters in more realistic models (or actual cells) are related to the effects of
changing the parameters in the model presented here, this model could be used
in other investigations, for example, simulating networks of such neurons. The
modeling of backpropagation in active dendrites by a delay is also novel, and may
be useful in modeling other systems in which backpropagation in active dendrites
(Segev and Rall, 1998; Häusseret al., 2000; Vetter et al., 2001), or the presence
of a second compartment in a two-compartment model (Pinsky and Rinzel, 1994;
Mainen and Sejnowski, 1996; Kepecs and Wang, 2000; Booth and Bose, 2001),
is important. More generally, it may be possible to construct similar ‘reduced’
models of other types of bursting cells (Izhikevich, 2000). The key ingredient in
the creation of (1), (2), or similar models mentioned in the appendix, is an under-
standing of the mechanisms involved in bursting, in particular, the effects of active
backpropagation in the dendrite on the somatic action potentials.

A simple model such as the one presented here is amenable to interesting exten-
sions. One example would be to make the refractory period of the dendrite,r ,
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a dynamic variable, so that it increased during a burst, as is known to occur (Turner,
2002). Then a burst could be terminated by a decreasing ISI meeting an increasing
refractory period, resulting in the failure to produce a DAP. Another example could
involve including a refractory period in the soma and investigating the effects of
changing the refractory periods in the two compartments. Even if analytical expres-
sions could not be obtained under these modifications, the computational simplicity
of the model presented here would enable one to gain insight into their effects. It
would be much harder to perform these manipulations in an ionic model for which
refractory periods are not directly accessible parameters. These ideas are currently
under investigation (Noonanet al., 2002).

Other similar work to that presented here includes (Coombeset al., 2001), which
involves the analysis of periodic forcing of an integrate-and-fire-or-burst model
neuron. The model was first presented inSmith et al. (2000) and, like ours, is
piecewise linear. It consists of a standard integrate-and-fire model with the addi-
tion of a second variable meant to represent inactivation of a low-threshold Ca2+

conductance. The inclusion of this extra variable means that the model is capa-
ble of postinhibitory rebound bursting.Rulkov (2000) recently introduced a two-
variable map that produced square-wave bursting, but for that map, iterates sweep
out ‘spikes’, and do not correspond to spike times. Also, it was not derived from
a continuous-time system.Goldbeter(1996) has discussed piecewise linear maps
that show bursting behavior—these are approximations to Poincare maps derived
from continuous-time systems. None of these models involved soma–dendrite
interactions, so our model is novel in that respect.

APPENDIX : OTHER M ODELS

The system (1), (2) is not unique in reproducing the qualitative features of ghost-
bursting. Since we understand the mechanism involved, we can create equally
valid models, each of which has its own advantages and disadvantages. This is
an important point, since it implies that both the phenomenon under investigation
(ghostbursting), and the model we have presented of it, arerobustwith respect to
small changes in their underlying dynamics.

One equation that could replace (1) is

dV

dt
= I − V + Ac

∑
n

H(tn − tn−1 − r )H(t − tn − σ)e−µ(t−tn−σ). (A.1)

Here we have replaced the delayed delta function in (1), δ(t−tn−σ), by a decaying
exponential that is zero beforet − tn − σ , namelyH(t − tn − σ)e−µ(t−tn−σ). For
this form of delayed feedback,V would be continuous att − tn − σ , although its
first derivative would not (V would still be discontinuous at firing times). Another
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alternative to (1) is

dV

dt
= I − V + Ac

∑
n

H(tn − tn−1 − r )s(t − tn) (A.2)

where

s(t) =
ab

b − a
H(t)(e−at

− e−bt), 0 < a < b (A.3)

and the contribution to the term involvings from firings other than the most recent
may or may not be taken into account. For (A.2), (A.3), V and its first derivative
will be continuous between firings, and the time to the peak ofs can be related to
the effective delay between a somatic action potential and the maximum flow of
current from dendrite to soma. A disadvantage of using these smoother forms of
delayed feedback is that even in the unforced case, the map (7), (8) can no longer
be written explicitly, but will involve equations that must be solved numerically.

It is also possible to replace the Heaviside function,H(x), that determines whe-
ther there is effective feedback from the dendrite to soma in (1) with a smooth
approximation, e.g.,[1 + tanh(νx)]/2, whereν is sufficiently large. Doing this
would remove the distinction between cases(i i ) and (i i i ) in (7). The B + Cc2

term in (2) could also be replaced by an increasing function ofc, but this would
affect both the analytical tractability of the system and its chaotic nature.

It is also possible to have partial failure of backpropagation, rather than complete.
This would involve replacing the Heaviside function in (1) with, for example

(1 − α)H(tn − tn−1 − r ) + αH(r + tn−1 − tn) (A.4)

whereα is a parameter. Whenα = 0, we recover (1), but for smallα there is
still some residual effect of the last dendritic action potential in a burst. This may
be more realistic, since the last dendritic action potential does not actually fail
completely (see Fig.1, middle panel). This modification would also decrease the
‘gap’ between the lowest instantaneous frequency during bursting and the next
lowest [see Fig.3 and point (ii ) in Section2.1].

We could also use the ‘theta neuron’ (Gutkin and Ermentrout, 1998) to produce
action potentials, rather than the integrate-and-fire mechanism, replacing (1) with,
for example,

dθ

dt
= 1 − cosθ + (1 + cosθ)[I + AcH(tn − tn−1 − r )δ(t − tn − σ)] (A.5)

whereθ ∈ [0, 2π) and the{tn} are the times at whichθ passes throughπ . For this
model, the transition from quiescence to periodic firing occurs asI is increased
through zero. Because the bifurcation from quiescence to periodic firing when
A = 0 is a saddle–node-on-a-circle bifurcation, as it is inDoironet al. (2002), this
model would have the correct scaling for interburst intervals asI is decreased.
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The modifications presented above may be useful for other applications of the
model (1), (2), for example, simulating an array of such neurons, and demonstrate
that there is no single ‘correct’ model of ghostbursting, but rather a variety.
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