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Abstract. The complex Ginzburg± Landau (CGL) equation on a one-dimensional

domain with periodic boundary conditions has a number of diþ erent symmetries. Solutions

of the CGL equation may or may not be ® xed by the action of these symmetries. We

investigate the stability of chaotic solutions with some re¯ ectional symmetry to perturbations

which break that symmetry. This can be achieved by considering the isotypic decomposition

of the space and ® nding the dominant Lyapunov exponent associated with each isotypic

component. Our numerical results indicate that for most parameter values, chaotic solutions

that have been restr icted to lie in invariant subspaces are unstable to perturbations out of

these subspaces, leading us to conclude that for these parameter values arbitrary initial

conditions will generically evolve to a solution with the minimum amount of symmetry

allowable. We have also found a small region of parameter space in which chaotic solutions

that are even are stable with respect to odd perturbations.

1 Introduction

Pattern formation in non-linear partial diþ erential equations (PDEs) is a much
studied topic. One common problem is determining the spatial patterns which can

occur when a spatially uniform (steady) state loses stability. Yamada and Fujisaka

(1983) were interested in the stability of spatially uniform `chaotic’ solutions of a

non-linear PDE to perturbations which are not spatially uniform. In order to study

this problem, they considered a ® nite-diþ erence discretization of the PDE which

gave a ® nite-dimensional system of coupled oscillators. The uniform state for the
PDE corresponds to a synchronized state for the coupled oscillators. Stability of

this uniform state was described in terms of what we now call normal Lyapunov

exponents. However, the only numerical results presented in this work were for

two coupled Lorenz systems.
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This work went largely unnoticed until Pecora and Carroll (1990) demonstrated

that in some circumstances it is possible to synchronize two identical chaotic

systems by linking them with a common signal. Since that time, there has been

much interest in and study of synchronization in systems of coupled oscillators,

one interesting application being secure communication (Ogorzalek, 1993).

Mathematically speaking, synchronization corresponds to motion in an invariant
subspace which is stable with respect to perturbations normal to the subspace. If

the largest normal Lyapunov exponent, associated with perturbations normal to

the subspace, is negative, then the synchronized state has a positive measure basin

of attraction, which may however be riddled so that there is a dense set of positive

measure in any neighbourhood of the invariant subspace which is in the basin of

another attractor (Alexander et al., 1992; Ashwin et al., 1994, 1996; Ott &
Sommerer, 1994). If the largest normal Lyapunov exponent changes sign as a

parameter is varied, then a blowout bifurcation occurs which may be either

supercritical or subcritical (Ashwin et al., 1994). In order to gain a deeper

understanding of these phenomena, model equations of low dimension are often

studied (Ashwin et al., 1998).

The synchronized state of coupled identical oscillators is a natural setting for an
invariant subspace. Another natural way of generating invariant subspaces is by the

use of symmetry. Fixed point spaces are invariant under the dynamics of a system

with symmetry and blowout bifurcations can be considered from these invariant

subspaces also. Rings of coupled oscillators with symmetry were considered by

Aston and Dellnitz (1995) and it was shown how the normal Lyapunov exponents
can be classi® ed according to the symmetry of the problem. This also leads to

more eý cient methods of computing Lyapunov exponents since the linearization

of the system which is used to compute them can be decomposed on the isotypic

components which are associated with the diþ erent irreducible representations of

the group action.

We now extend the ideas of Aston and Dellnitz (1995) to PDEs with symmetry.
Again, the ¯ ow of a PDE is invariant on various ® xed point spaces and, if this

motion is chaotic, then we can determine normal Lyapunov exponents associated

with diþ erent normal directions, which can be determined using the symmetry.

Thus, we are returning to the problem which originally motivated the work of

Yamada and Fujisaka (1983) but in a more general framework. Blowout bifurcations

in PDE mean ® eld dynamo models associated with a simple re¯ ectional symmetry
have also been considered in Covas et al. (1997, 1998).

The equation that we will apply these ideas to is the complex Ginzburg± Landau

(CGL) equation

A t 5 RA + (1 + i m ) $ 2
A 2 (1 + i l )A ½ A ½ 2

(1)

with A Î C and R, m , l Î R . This equation was originally derived as a generic

amplitude equation which describes the motion near to points of instability in

equations which model ¯ uid dynamics (Newell & Whitehead, 1969; Stewartson &

Stuart, 1971; Stuart & DiPrima, 1978) and chemical turbulence (Kuramoto &

Koga, 1981). It has also been studied widely as an interesting model with a rich
solution structure as it is known to have a ® nite-dimensional attractor and inertial

manifolds (Constantin, 1989; Doering et al., 1988; Duan et al., 1993). For some

parameter values, it is known to show complicated spatio-temporal behaviour,

which we will refer to as `chaos’ . We consider only the cubic non-linearity and one
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space dimension so that the solutions of (1) exhibit soft turbulence (Bartuccelli

et al., 1990).

The CGL equation (1) is equivariant with respect to various symmetry groups

and its solutions (chaotic or otherwise) may possess one or more of these symmet-

ries. The aim of this work is to numerically investigate solutions of the CGL

equation which have various symmetries and study their stability or instability with
respect to perturbations which break the symmetry of the solutions.

The Lyapunov exponents of the CGL equation are also of interest for other

reasons. In particular, rigorous bounds on the dimension of the attractor have been

obtained by bounding the Lyapunov dimension which is derived from the Lyapunov

exponents via the Kaplan± Yorke formula (Bartuccelli et al., 1990; Doering et al.,

1987, 1988). Further analytical results for the CGL equation have been obtained
in Bartuccelli et al. (1996) and Doering et al. (1994).

In Section 2, we describe the symmetries of the CGL equation while in Section

3, we brie¯ y review previous results regarding Lyapunov exponents and symmetry.

We also show that the CGL equation may have three zero Lyapunov exponents

due to the continuous symmetries of the equation. In Section 4, we describe the

re¯ ectional symmetries of the solutions that we consider in this paper while Sections
5 and 6 describe the numerical methods used and the results obtained. Finally,

some conclusions are drawn in Section 7.

2 Symmetries of the CGL equation

In this section we brie¯ y outline some of the theory of dynamical systems with

symmetry, concentrating on its applicability to the CGL equation. Group theory

is the natural language with which to discuss symmetry; see Golubitsky et al.

(1988) for many results concerning the application of symmetry to dynamical

systems and their bifurcations.

We consider a general evolution equation of the form

A t 5 g(A), g : X ® X (2)

where g is assumed to be a non-linear operator involving spatial derivatives and X

is an appropriate Hilbert space which incorporates the boundary conditions. We

also assume that g satis® es the equivariance condition

c g(A) 5 g( c A) for all c Î C (3)

where C is a compact Lie group. For any subgroup R of C , we de® ne the ® xed

point space

Fix( R ) 5 {A Î X : r A 5 A for all r Î R }

It is easily veri® ed that if g satis® es the equivariance condition (3), then

g : Fix( R ) ® Fix( R )

for all subgroups R of C and this implies that the ® xed point spaces are invariant

under the ¯ ow of the non-linear equation (2).

Suppose that a linear operator L commutes with C so that

c L 5 L c for all c Î C (4)

In this case, there are many more invariant subspaces for the linear operator L

which involve the isotypic components of the space X, which we now describe.
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The space X can be decomposed as a direct sum of irreducible subspaces

X 5 R
i

V i

If we group together all the V i on which C acts isomorphically, then we obtain the
C̀ -isotypic decomposition’

X 5 R
k

W k

where each isotypic component W i is the sum of isomorphic irreducible subspaces

which are associated with one of the irreducible representations of the group C .

Moreover, this decomposition is unique (Aston, 1991; Healey, 1989; Werner,

1990).

The signi® cance of this isotypic decomposition is that for a linear operator L

satisfying (4), all the isotypic components are invariant under L , that is

L : W k ® W k

This results in a block diagonal structure to the linear operator L.

We assume that W 1 is associated with the trivial irreducible representation c 5 I

for all c Î C and so W 1 5 Fix( C ).

This is relevant to the calculation of Lyapunov exponents since the variational

equation involves the linear operator gA(A). It is well known and easily veri® ed that
if there is a trajectory A(t) of (2) such that A(t) Î Fix( R ) for some subgroup R of
C , then

r gA(A(t)) 5 gA(A(t)) r for all r Î R

Thus, the linear operator gA decomposes on the R -isotypic components of the

space X. The important symmetry group in this case is not the symmetry group C

of the equation but the subgroup R of symmetries of the particular solution being

considered.

We now consider the CGL equation (1) on the one-dimensional domain [0, 2 p )

with periodic boundary conditions. This equation has both continuous and discrete
symmetries which are given by

h A(x, t) 5 ei h
A(x, t), h Î [0, 2 p )

r a A(x, t) 5 A(x + a , t), a Î [0, 2 p )

s b A(x, t) 5 A(x, t + b ), b Î R

s1A(x, t) 5 A( 2 x, t)

These symmetries correspond to a rotation of the complex amplitude, space

translation, time translation and a spatial re¯ ection, respectively. We note that a
special case of the rotation occurs when h 5 p and this gives another symmetry of

order two. Since this will be important in our later work, we de® ne

p A(x, t) : 5 s2 A(x, t) 5 2 A(x, t)

Relative equilibria are associated with continuous symmetries and in this case, the
h symmetry gives rise to such solutions which are often referred to as rotating

waves. These were studied in some detail in Doering et al. (1988) which included

a linear stability analysis.
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3 Lyapunov exponents and symmetry

The way that symmetry aþ ects the determination of Lyapunov exponents was

considered in Aston and Dellnitz (1995) and applied to systems of coupled

oscillators. We brie¯ y review the main results of that work and will then apply the

ideas to the CGL equation.

3.1 Classi ® cation of Lyapunov exponents

For a general n-dimensional ordinary diþ erential equation (ODE)

xÇ 5 f(x), x(0) 5 x0 (5)

we ® nd the Lyapunov exponents by integrating the variational equation

U Ç 5 Df (x(t)) U , U (0) 5 I (6)

where Df (x(t)) is the Jacobian of f evaluated at x(t), the solution of (5). We de® ne

K 5 lim
t ® `

[ U (t)
T

U (t)]
1/2t (7)

provided this limit exists, where the superscript `T’ denotes the matrix transpose.
The Multiplicative Ergodic Theorem of Oseledec (Oseledec, 1968; Eckmann &

Ruelle, 1985) states that this limit exists for l -almost all x0 , where l is the invariant

measure associated with the attractor of (5). If the eigenvalues of K are m i ,

i 5 1, 2, . . . , n, then the Lyapunov exponents of the solution x(t) are

k i 5 log ½ m i ½ , i 5 1, 2, . . . , n

If (5) is equivariant with respect to some compact Lie group C , then we have

the following result (Aston & Dellnitz, 1995).

Lemma 1. Let S be an invariant set contained in Fix( R ) for some subgroup R of
C . For x0 Î S, let x(t) be the solution of (5) with x(0) 5 x0 . Then the solution U (t)

of the variational equation (6) commutes with the action of R , i.e.

r U (t) 5 U (t) r

for all r Î R and t > 0.

A corollary of this is that the matrix K de® ned by (7) also commutes with the

action of R . Thus, K can be put into block diagonal form and so its eigenvalues,

and thus the Lyapunov exponents, can be associated with particular isotypic
components.

The dominant (most positive) Lyapunov exponent associated with each isotypic

component is the most important one for our purposes since it indicates whether

the invariant set S is stable with respect to perturbations associated with the

particular isotypic component (a positive dominant Lyapunov exponent implies

that S is unstable to such perturbations). Using the block diagonal form of K these
are easily computed.

For a particular R -isotypic component Wk we know that Df (x(t)) leaves W k

invariant and so we denote its restriction to W k by Dk f(x(t)) : W k ® W k . The

dominant Lyapunov exponent associated with the isotypic component Wk can then
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be found using the vector form of the variational equation restricted to W k given by

u Ç k 5 Dk f(x(t)) u k , u k(0) 5 wk Î W k (8)

and is given by

k 1,k 5 lim
t ® `

1

t
log k u k(t) k

Note that only the vector equation needs to be integrated to ® nd the dominant

Lyapunov exponent as a randomly chosen initial condition u k(0) 5 wk will swiftly

line up with the direction in phase space of greatest expansion or least contraction.
These ideas generalize naturally to the evolution of PDEs de® ned on appropriate

Hilbert spaces. In particular, the isotypic decomposition for PDEs is well de® ned

and any linear partial diþ erential operator which commutes with all the elements

of a group leaves the isotypic components associated with that group invariant

(Aston, 1991). Thus, the linear systems de® ned by (8) are also well de® ned when

f is a partial diþ erential operator. Finally, the dominant Lyapunov exponent for a
PDE can be de® ned in terms of the rate of asymptotic exponential growth of the

length of a vector (Doering et al., 1988) and is de® ned by

k 1,k 5 lim sup
t ® `

1

t
log{sup

x0

sup
k u k (0) k < 1

k u k(t) k }

where u k(t) is the solution of the variational equation (8) and x0 is the initial

condition for the PDE. Thus, the whole framework described in this section applies

to PDEs as well as to ODEs.

3.2 Continuous symmetries

As mentioned in Section 2, the CGL equation has three continuous symmetries,
namely h , r a and s b . It was shown in Theorem 2.15 of Aston and Dellnitz (1995)

that continuous symmetries give rise to zero Lyapunov exponents provided that

the continuous symmetry acts on the solution non-tr ivially. This result is based on

the fact that if x(t) is a trajectory of (5), then Lx(t) is a solution of the variational

equation for all L Î , where , is the Lie algebra of C . If a one-parameter subgroup
acts trivially on the trajectory x(t) and if L Î , is the corresponding element of the

Lie algebra, then Lx(t) 5 0 and so in this case, there is no zero Lyapunov exponent

associated with this symmetry. This is a generalization of the well-known result

that autonomous diþ erential equations have one zero Lyapunov exponent which is

due to the continuous time translation symmetry.

We denote by L h , L a and L b the elements of the Lie algebra associated with the
h , r a and s b symmetries, respectively. Since the Lie algebra is the tangent to the

group orbit at the origin, we have that

L h A(x, t) 5
d( h A(x, t))

d h
|
h 5 0

5
d(e

i h
A(x, t))

d h
|

h 5 0

5 iA(x, t)

Similarly

L a A(x, t) 5 Ax(x, t), L b A(x, t) 5 A t(x, t)
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Thus, any chaotic attractor which is not spatially uniform has three zero

Lyapunov exponents associated with it. If the attractor lies in Fix( R ) for some

subgroup R of C , then the zero Lyapunov exponents may occur in diþ erent
R -isotypic components. These can be determined by ® nding which isotypic compo-

nents contain the trajectories LA(x, t) for each L Î , . However, for any symmetry,

L h A(x, t) and L b A(x, t) will always have the same symmetry as the solution trajectory
and so occur in W1 5 Fix( R ) whereas in some cases, L a A(x, t) may occur in a

diþ erent isotypic component.

As a simple example, consider the CGL equation with homogeneous Neumann

boundary conditions which is equivalent to considering solutions which are invari-

ant under the re¯ ectional symmetry s1 . Thus, the symmetries of the solution are

given by R 5 {I, s1} Z 2 . The R -isotypic components are W 1 5 Fix( R ) which con-
sists of all even periodic functions and W2 which consists of all odd periodic

functions. When only a re¯ ectional symmetry is involved, the isotypic components

W 1 and W2 are often referred to as the symmetric and antisymmetric spaces,

respectively. In this case we see that L h A(x, t) and L b A(x, t) are symmetric functions

while L a A(x, t) is antisymmetric. Thus, there will be two zero Lyapunov exponents

associated with the motion in Fix( R ) arising from the rotational and time translation
symmetries and one in the symmetry-breaking antisymmetric direction arising from

the space translation symmetry. Since we numerically calculate only the largest

Lyapunov exponent, this means that neither of the dominant Lyapunov exponents

associated with the symmetric and antisymmetric spaces can be negative.

These theoretical predictions are consistent with the numerical results obtained
by Keefe (1985) who considered the CGL equation with homogeneous Neumann

boundary conditions and who always found two zero Lyapunov exponents.

4 Symmetric solutions

As mentioned in the previous section, it is the symmetries of the solutions which

are important when computing Lyapunov exponents, rather than the symmetries

of the equation itself. In this paper, we restrict attention to the re¯ ectional
symmetries s1 and s2 de® ned in Section 2 and consider perturbations which break

the re¯ ectional symmetries but have the same spatial period as the underlying

solution. In a subsequent paper (Aston & Laing, 1999), we will consider ® nite

subgroups of the space translation symmetry r a Ð this corresponds to adding per-

turbations which have period greater than that of the underlying solution.

We de® ne the two subgroups

R 1 5 {I, s1}, R 2 5 {I, s1 s2 }

Clearly, these two subgroups are both isomorphic to Z 2 and their ® xed point spaces

are respectively the spaces of even and odd periodic functions. These are equivalent

to homogeneous Neumann and homogeneous Dirichlet boundary conditions,
respectively. A third symmetry which we could consider is the product of the

previous two and is simply s2 . However, only the zero function is ® xed by s2 and

so this is of no interest.

There is another group which is of interest where we combine one of the

re¯ ections with a space translation. This is given by

R 3 5 {I, s1 s2 , r p s1 , r p s2} Z 2 3 Z 2
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We note that

r p s1 A(x, t) 5 A( p 2 x, t), r p s2 A(x, t) 5 2 A(x + p , t)

Thus, functions ® xed by s1s2 are odd, functions ® xed by r p s1 are even about p /2 and

functions ® xed by r p s2 satisfy A(x + p , t) 5 2 A(x, t). Clearly if two of these are

satis® ed then so is the third. Thus Fix( R 3 ) consists of functions which are odd
(about zero) and even about p /2 which is equivalent to imposing a Dirichlet

boundary condition at x 5 0 and a Neumann boundary condition at x 5 p /2. We

note that a translation in space of a function in Fix( R 3 ) by p /2 gives a function

which is even about x 5 0 and odd about x 5 p /2. Thus, interchanging the boundary

conditions gives rise to a conjugate solution.

We are interested in determining the stability of chaotic solutions which have
some symmetry to symmetry-breaking perturbations. For the ® rst two cases of the

subgroups R 1 and R 2 , we decompose the space X as

X 5 Xe Xo

where X e consists of all even functions of period 2 p and Xo consists of all odd

functions of period 2 p . This is the isotypic decomposition associated with both the

groups R 1 and R 2 .
For solutions with symmetry R 1 , we require solutions in X e 5 Fix( R 1 ) and we

compute the dominant Lyapunov exponent associated with perturbations in Xo .

Similarly, for R 2 , we compute solutions in Xo 5 Fix( R 2 ) and calculate the dominant

Lyapunov exponent associated with perturbations in Xe . We note that Keefe (1989)

computed the dominant Lyapunov exponent associated with the attractor in X e

and in X but did not look at the eþ ect of symmetry-breaking perturbations.
The group R 3 has four one-dimensional irreducible representations and so there

are four corresponding isotypic components. These can be speci® ed as

W 1 5 {A Î X : A(0, t) 5 0, Ax( p /2, t) 5 0} 5 Fix( R 3 )

W 2 5 {A Î X : Ax(0, t) 5 0, A( p /2, t) 5 0}

W 3 5 {A Î X : A(0, t) 5 0, A( p /2, t) 5 0}

W 4 5 {A Î X : Ax(0, t) 5 0, Ax ( p /2, t) 5 0}

and correspond to all possible combinations of homogeneous Neumann and

Dirichlet boundary conditions at x 5 0 and p /2. In this case, there are again

two zero Lyapunov exponents associated with W1 . Now if A(x, t) Î Fix( R 3 ), then

L a A(x, t) 5 Ax(x, t) Î W 2 and so the third zero Lyapunov exponent is associated

with W2 .
Expanding A(x, t) as a Fourier series, it is easy to identify the modes which must

occur for each isotypic component as

A(x, t) Î W1 Þ A(x, t) 5 R
`

k 5 1

bk(t) sin(2k 2 1)x + i ( R
`

k 5 1

ck(t) sin(2k 2 1)x)
A(x, t) Î W2 Þ A(x, t) 5 R

`

k 5 1

bk(t) cos(2k 2 1)x + i ( R
`

k 5 1

ck(t) cos(2k 2 1)x)
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A(x, t) Î W3 Þ A(x, t) 5 R
`

k 5 1

bk(t) sin 2kx + i ( R
`

k 5 1

ck(t) sin 2kx)
A(x, t) Î W4 Þ A(x, t) 5

b0 (t)

2
+ R

`

k 5 1

bk(t) cos 2kx + i ( c0 (t)

2
+ R

`

k 5 1

ck (t) cos 2kx)
5 Numerical method

In this section we brie¯ y describe the numerical method used for calculating the
solutions shown in Section 6. We use a pseudo-spectral method coded in Matlab

with time integration performed by a variable step-size Runge± Kutta method. We

show details for only the real part of A(x, t); the imaginary part is dealt with

similarly. We write the real part of A(x, t) at the points {xn} as

A r(xn , t) 5
1

N R
N 2 1

k 5 0

Xk(t) exp(ikxn ), 1 < n < N (9)

where

xn 5 ( n 2 1

N ) 2 p

(This is just the inverse discrete Fourier transform of {Xk(t)}.) The spectral

coeý cients, Xk(t), are obtained from {Ar(xn , t)} via the discrete Fourier transform

Xk(t) 5 R
N

n 5 1

Ar (xn , t) exp( 2 ikxn ), 0 < k < N 2 1 (10)

Since Ar(xn , t) is real

Xk(t) 5 XN 2 k(t), k 5 1, . . . , N /2 2 1

and both X0(t) and XN/2(t) are real. Furthermore, if Ar(xn , t) is even then {Xk(t)} is

real, and if A(xn , t) is odd then {Xk(t)} is purely imaginary.

We use {Xk(t)} as our dependent variables, i.e. given {Xk(t)} we want to know

{XÇ k(t)}. Using the spectral representation of our solution, (10), evaluation of the
linear terms RA + (1 + i m ) $ 2

A in (1) is simple, and unlike a ® nite-di þ erence

scheme, the spatial diþ erentiation is exact. To calculate the non-linear term

(1 + i l )A ½ A ½ 2 the inverse transform (9) is used to form {A(xn , t)} from its real and

imaginary parts. The cubic term {A(xn , t) ½ A(xn , t) ½ 2
} is then calculated, and a

Fourier transform of the form (10) is used to evaluate the contribution of this non-
linear term to {XÇ k(t)}. Anti-aliasing is performed in the calculation of the non-

linear term using padding and truncation as described in Canuto et al. (1988) and

N is chosen to be a power of 2 so that the fast Fourier transform and its inverse

can be used.

6 Numerical results

In Fig. 1 we show an example of a periodic orbit that is stable within Xe but which

is unstable to odd perturbations. We start from a randomly chosen even initial
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Fig. 1. A periodic even solution that is unstable to odd perturbations, leading to non-symmetric chaos.

Parameter values: R 5 16, l 5 1, m 5 2 7. A small odd perturbation is introduced at t 5 2.
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condition which evolves rapidly to a periodic state. A small odd perturbation is

introduced at t 5 2 and this grows exponentially in time so that for t> 4 the

solution is chaotic with a spatial wavelength of 2 p . Parameter values are R 5 16,
l 5 1, m 5 2 7. The real part of A is shown on the left and the imaginary part on

the right. In Figs 1 ± 4, 8 and 9 we show contour plots of the real and imaginary

parts of the solution with black contour lines for negative values and grey contour
lines for positive values. The x-axis has been rescaled to [0, 1) in each of these

® gures.

Figure 2 shows an example of a chaotic solution in X e that is unstable to odd

perturbations. The randomly chosen even initial condition evolves to an even

chaotic attractor. A small odd perturbation is introduced at t 5 2 and this grows to

produce a chaotic solution with a spatial wavelength of 2 p . Parameter values are

R 5 16, l 5 5, m 5 2 7. Clearly there are two coexisting chaotic `attractors’ at these

parameter values, although the even attractor is only attracting in the even subspace.

Figure 3 shows a chaotic odd solution that is unstable to even perturbations. A

small even perturbation is added at t 5 0.5 and this grows to produce a chaotic

solution with no symmetry. Parameter values are R 5 36, m 5 2 10, l 5 12.

Figure 4 shows a chaotic solution in Fix( R 3) that is unstable to perturbations in
all three isotypic components, W2 , W 3 , W4 . A small perturbation not in Fix( R 3 ) is

added at t 5 1 and this grows exponentially in time. Parameter values are R 5 16,
m 5 2 5, l 5 12.

In Fig. 5 we show the dominant Lyapunov exponents for a solution in Fix( R 3 )

as a function of l ( 5 2 m ) for R 5 16. The continuous symmetries mentioned above
prevent the dominant Lyapunov exponent associated with W 1 and W 2 from being

negative but put no restrictions on the dominant Lyapunov exponents associated

with W3 and W 4 . Note that the dominant Lyapunov exponent associated with W 1

is always zero and so the non-trivial Lyapunov exponents will all be negative. This

implies that the underlying solution is either periodic or quasiperiodic. To illustrate

the stability or instability of the underlying motion with respect to the diþ erent
perturbations, we de® ne projections on to each of the R 3-isotypic components as

A1 (x, t) 5
1

4
[A(x, t) 2 A( 2 x, t) 2 A(x 2 p , t) + A( p 2 x, t)]

A2 (x, t) 5
1

4
[A(x, t) + A( 2 x, t) 2 A(x 2 p , t) 2 A( p 2 x, t)]

A3 (x, t) 5
1

4
[A(x, t) 2 A( 2 x, t) + A(x 2 p , t) 2 A( p 2 x, t)]

A4 (x, t) 5
1

4
[A(x, t) + A( 2 x, t) + A(x 2 p , t) + A( p 2 x, t)]

Note that A(x, t) 5 A1(x, t) + A2(x, t) + A3(x, t) + A4(x, t). In Fig. 6 we choose the

parameter values R 5 16, l 5 2.9 5 2 m . We start with an initial condition in

Fix( R 3 ), let this evolve until t 5 1.5 and then add a small perturbation in either

W 2 , W 3 or W4 . The norm of the projection of the solution on to the appropriate
isotypic component is then plotted as a function of time, along with the norm of

the solution projected on to W 1 5 Fix( R 3 ) on a logarithmic scale.

We see that the underlying solution is unstable with respect to perturbations in

W 2 and W4 but is stable with respect to perturbations in W 3 , which is consistent
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Fig. 2. A chaotic even solution that is unstable to odd perturbations, leading to non-symmetric chaos.

Parameter values: R 5 16, l 5 5, m 5 2 7. A small odd perturbation is introduced at t 5 2.
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Fig. 3. A chaotic odd solution that is unstable to even perturbations. Parameter values: R 5 36,

m 5 2 10, l 5 12. A small even perturbation is added at t 5 0.5.
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Fig. 4. A chaotic solution that is odd about 0 and even about p /2. Parameter values: R 5 16, m 5 2 5,

l 5 12. A small perturbation that is neither odd about 0 nor even about p /2 has been added at t 5 1.
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Fig. 5. Dominant Lyapunov exponents for a solution in Fix( R 3 ) with R 5 16. 1: perturbations in W1

( 5 Fix( R 3 )), 2: perturbations in W2 , 3: perturbations in W3 , 4: perturbations in W4 .

with the signs of the corresponding Lyapunov exponents shown in Fig. 5. Note

that the Lyapunov exponent associated with perturbations in W 4 is larger than for
perturbations in W2 and also that the solution component in W1 ceases to be

periodic when the W 4 component becomes similar in magnitude to it. This is the

point at which, to the eye, the solution would no longer appear to have R 3

symmetry.

This type of instability has implications for the numerical computation of

solutions with certain symmetries. The source of the problem is the numerical
computation of the discrete Fourier transform and its inverse. Each of these

processes introduces errors which are, for Matlab, typically smaller than the

quantity being transformed by a factor of 1016. Thus, for example, the discrete

Fourier transform of a real, even function will not be purely real, but will have a

small imaginary component, and when the inverse transform is taken the result
will have a small odd component. If this even solution is stable with respect to odd

perturbations this will not matter, but for solutions such as those shown in Figs 1

and 2 where we have instability to odd perturbations these errors will grow

exponentially in time and ultimately overwhelm the even solution.

If we want the solution to remain within an invariant subspace we must modify

the numerical scheme. For the above example, this is simply done by setting the
imaginary component of the transformed variable to zero immediately after it is

calculated, or better still, only working with the real part of the transformed

variable. This is the technique used for Lyapunov exponent calculations. This

method cannot, however, be used in, for example, the calculations for Fig. 1. Here,
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Fig. 6. Growth and decay of functions A2 , A4 and A3 over time with R 5 16, l 5 2 m 5 2.9. In each

case a small perturbation has been added at t 5 1.5 to a solution in Fix( R 3 ).

although we added a small odd perturbation at time t 5 2 s to demonstrate

instability in this isotypic component, strictly speaking this was not necessary as,

given suý cient time, the numerical errors introduced by the Fourier transform
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would have grown large enough to destroy the appearance of evenness Ð all we did

was hasten the onset of this phenomenon.

6.1 Stable even chaos

Although for the vast majority of parameter values we examined, solutions that
were chaotic when restricted to lie in a ® xed point subspace were unstable with

respect to perturbations normal to that space, we did ® nd a region in parameter

space in which there exist chaotic solutions in the subspace of even solutions that

are stable with respect to perturbations in the odd subspace. We plot the Lyapunov

exponents in part of this region in Fig. 7 and show a typical example, at parameter

values R 5 1.05, m 5 4, l 5 2 4, in Fig. 8, where this particular solution is even
about the origin. We might describe this as `weak’ chaos arising from the bifurcation

of a periodic or quasiperiodic orbit for which the dominant Lyapunov exponent in

the normal direction remains zero as a parameter is varied.

The chaotic even solution at these parameter values is `orbitally stable’ , meaning

that there is a continuous family of such solutions related to one another by the

spatial shift, r a , and (assuming there are no coexisting attractors) an arbitrary initial
condition will be attracted to one member of this family, i.e. a solution that is even

about some point. We demonstrate this in Fig. 9 where we plot a solution started

at a randomly chosen initial condition together with one of the two points in

[0, 2 p ) about which the ® rst mode of the solution (i.e. that described by a linear

Fig. 7. Dominant Lyapunov exponents for an even solution (solid line) with an odd perturbation

(dashed line) for R 5 1.05.
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Fig. 8. A stable chaotic solution that is even about the origin. Parameter values: R 5 1.05, m 5 4,

l 5 2 4.
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Fig. 9. Demonstration of the orbital stability of an even chaotic solution. The dark line is one of the

two points about which the ® rst mode is even, for both the real and imaginary parts of A. See text for

more details. Parameter values: R 5 1.05, m 5 4, l 5 2 4.
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combination of sin x and cos x) is even, for both the real and imaginary parts of A.

We see that by time t 5 3 s the solution has settled to being even about an x value

of approximately 0.1 3 2 p . A large randomly chosen perturbation was added at

t 5 10 and we see that the solution quickly settled to being even about an x value

of approximately 0.87 3 2 p . Note that during the transients the ® rst modes of the

real and imaginary parts of A are even about diþ erent points, but on the attractor
they are even about the same point, as they must be for an even solution. See

Golubitsky et al. (1988) for more details on orbital stability.

Despite searching, we could not ® nd any evidence of a `blowout’ bifurcation

(Ashwin et al., 1998) in which the even solution remains chaotic while the dominant

Lyapunov exponent in the normal direction changes from zero to positive as a

parameter is varied. The reason for this is that, as shown in Fig. 7, the solution in
the even subspace becomes periodic or quasiperiodic before the normal Lyapunov

exponent becomes positive.

7 Conclusions

Our numerical results show that for much of the parameter space for the CGL

equation, chaotic solutions which have some sort of re¯ ectional symmetry are

unstable to perturbations which break that symmetry, while there are also small

regions of parameter space in which there are chaotic even solutions that are

asymptotically stable with respect to odd perturbations. Of course we have not
investigated all of the three-dimensional parameter space and there may be more

interesting behaviour waiting to be found. Periodic solutions with symmetry are

sometimes stable with respect to symmetry-breaking perturbations but it would

appear that for most parameter values for the CGL equation that for arbitrary

initial conditions, if the ® nal solution is chaotic then it will have the minimum
possible amount of symmetry. Clearly these ideas apply to any PDEs with symmetry

and are not restricted to the CGL equation. Diþ erent results may be obtained for

diþ erent equations.

Acknowledgements

This work was supported by the EPSRC Applied Nonlinear Mathematics Initiative.

We thank Michele Bartuccelli for helpful discussions regarding the CGL equation.

References

Alexander, J. C., Kan, I., Yorke, J. A. and You, Z. (1992) Riddled basins. International Journal of

Bifurcation & Chaos 2, 795 ± 813.

Ashwin, P., Buescu, J. and Stewart, I. (1994) Bubbling of attractors and synchronisation of chaotic

oscillators. Physics Letters A 193, 126 ± 139.

Ashwin, P., Buescu, J. and Stewart, I. (1996) From attractor to chaotic saddle: a tale of transverse

instability. Nonlinearity 9, 703 ± 737.

Ashwin, P., Aston, P. J. and Nicol, M. (1998) On the unfolding of a blowout bifurcation. Physica D

111, 81 ± 95.

Aston, P. J. (1991) Analysis and computation of symmetry-breaking bifurcation and scaling laws using

group theoretic methods. SIAM Journal of Mathematical Analysis 22, 181 ± 212.

Aston, P. J. and Dellnitz, M. (1995) Symmetry breaking bifurcations of chaotic attractors. International

Journal of Bifurcation & Chaos 5, 1643 ± 1676.

Aston, P. J. and Laing, C. R. (1999) Symmetry and chaos in the complex Ginsburg± Landau equationÐ

II. Translational symmetries. Physica D (in press).



COMPLEX GINZBURG± LANDAU EQUATIONÐ I 253

Bartuccelli, M. V., Constantin, P., Doering, C. R., Gibbon, J. D. and Gisselfalt, M. (1990) On the

possibility of soft and hard turbulence in the complex Ginsburg± Landau equation. Physica D 44,

421 ± 444.

Bartuccelli, M. V., Gibbon, J. D. and Oliver, M. (1996) Length scales in solutions of the complex

Ginzburg± Landau equation. Physica D 89, 267 ± 286.

Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zang, T. A. (1988) Spectral Methods in Fluid Dynamics

(Springer-Verlag, Berlin).

Constantin, P. (1989) A construction of inertial manifolds. Contemp. Math 99 (Proceedings AMS

Summer School, Boulder, 1987), pp. 27 ± 62.

Covas, E., Ashwin, P. and Tavakol, R. (1997) Non-normal parameter blowout bifurcation in a truncated

mean ® eld dynamo. Physical Review E 56, 6451 ± 6458.

Covas, E., Tavakol, R., Ashwin, P., Tworkowski, A. and Brooke, J. M. (1998) In± out intermittency in

PDE and ODE models of axisymmetric mean-® eld dynamos. Technical Report, Department of

Mathematics and Statistics, University of Surrey.

Doering, C. R., Gibbon, J. D., Holm, D. D. and Nicolaenko, B. (1987) Exact Lyapunov dimension of

the universal attractor for the complex Ginsburg± Landau equation. Physical Review Letters 59,

2911 ± 2914.

Doering, C. R., Gibbon, J. D., Holm, D. D. and Nicolaenko, B. (1988) Low-dimensional behaviour in

the complex Ginzburg± Landau equation. Nonlinearity 1, 279 ± 309.

Doering, C. R., Gibbon, J. D. and Levermore, C. D. (1994) Weak and strong solutions of the complex

Ginsburg± Landau equation. Physica D 71, 285 ± 318.

Duan, J. Q., Titi, E. S. and Holmes, P. (1993) Regularity, approximation and asymptotic dynamics for

a generalized Ginzburg± Landau equation. Nonlinearity 6, 915 ± 933.

Eckmann, J. P. and Ruelle, D. (1985) Ergodic theory of chaos and strange attractors. Reviews of Modern

Physics 57, 617 ± 656.

Golubitsky, M., Stewart, I. and Schaeþ er, D. G. (1988) Singularities and Groups in Bifurcation Theory,

Vol. II (Applied Math. Sciences 69, Springer-Verlag, Berlin).

Healey, T. (1989) Numerical bifurcation with symmetry: diagnosis & computation of singular points.

Bifurcation Theory and its Numerical Analysis (eds Li Kaitai, J. E. Marsden, M. Golubitsky and G.

Iooss; Xi’ an Jiatong University Press), pp. 218 ± 227.

Keefe, L. R. (1985) Dynamics of perturbed wavetrain solutions to the Ginzburg± Landau equation.

Studies in Applied Mathematics 73, 91 ± 153.

Keefe, L. (1989) Properties of Ginzburg± Landau attractors associated with their Lyapunov vectors and

spectra. Physics Letters A 140, 317 ± 322.

Kuramoto, Y. and Koga, S. (1981) Turbulized rotating chemical waves. Progress in Theoretical Physics

Supplement 66, 1081 ± 1085.

Newell, A. C. and Whitehead, J. A. (1969) Finite bandwidth, ® nite amplitude convection. Journal of

Fluid Mechanics 38, 279 ± 303.

Ogorzalek, M. J. (1993) Taming chaosÐ Part I: Synchronisation. IEEE Transactions on Circuits and

Systems I: Fundamental Theory and Applications 40, 693 ± 699.

Oseledec, V. I. (1968) A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical

systems. Trudy Moskovskogo Matematicheskogo Obshchestva 19, 197 ± 231.

Ott, E. and Sommerer, J. (1994) Blowout bifurcations: the occurrence of riddled basins and on± oþ

intermittency. Physics Letters A 188, 39 ± 47.

Pecora, L. M. and Carroll, T. C. (1990) Synchronisation in chaotic oscillators. Physical Review Letters

64, 821 ± 824.

Stewartson, K. and Stuart, J. T. (1971) A non-linear instability theory for a wave system in plane

Poiseulle ¯ ow. Journal of Fluid Mechanics 48, 529 ± 545.

Stuart, J. T. and DiPrima, R. C. (1978) The Eckhaus and Benjamin± Feir resonance mechanisms.

Proceedings of the Royal Society London A 362, 27 ± 41.

Werner, B. (1990) Eigenvalue problems with the symmetry of a group and bifurcations. Continuation

and B ifurcations: Numerical Techniques and Applications, NATO ASI Series C, Vol. 313 (eds D. Roose,

B. De Dier and A. Spence), pp. 71 ± 88.

Yamada, H. and Fujisaka, T. (1983) Stability theory of synchronised motion in coupled-oscillator

systems. Progress in Theoretical Physics 69, 32 ± 47.


