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Abstract 

The dynamics near a perturbed degenerate homocfinic connection to a periodic orbit in three dimensions is modeled by 
a two-parameter map. One parameter controls the passage of the manifolds of the orbit through one another, and the other 
breaks the degeneracy and causes the manifolds to intersect transversely. An analysis of the map recovers the results of 
Gaspard and Wang (1987), relating to the accumulation of saddle-node bifurcations of periodic orbits on a single homoclinic 
tangency, and in addition shows that the local behavior of these orbits at the two tangencies can be linked together giving 
closed loops in period versus parameter plots. These analytic results are then compared with numerical results from a 
three-dimensional system of ordinary differential equations. 

1. Introduction 

A homoclinic  tangency to a periodic orbit  in three 

dimensions is responsible for complicated recur- 

rent dynamics.  Specifically, a countable infinity of  

per iodic  orbits appear in a cascade of  saddle-node 

bifurcations as the stable and unstable manifolds of  a 

l imit  cycle approach a quadratic tangency in a one- 

parameter  system. For  details see the work by Gas- 

pard and Wang [4] ,  Gavri lov and Si l 'n ikov [5,6] ,  

Newhouse [13] ,  or the summaries by Gucken- 

heimer and Holmes [9] ,  and Wiggins [ 14]. 

Most  of  these investigations have concentrated on 

a single quadratic tangency between the unstable and 

stable manifolds  of  the per iodic  orbit,  and have de- 

rived results that are local in both parameter and phase 

1 Current address: Department of Applied Mathematics and The- 
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space. However, in a one-parameter system, the com- 

plete passage of  the stable and unstable manifolds 

through each other often yields two successive tan- 

gencies, the ' leading '  and ' t rai l ing '  tangencies, at two 

different values of  the parameter. The local results re- 

ferred to above can be applied to each tangency sep- 

arately, but in general the manner in which the orbits 

created at one tangency connect with those associated 

with the other is problem specific and must  be ad- 

dressed numerically. 

However, in some l imited instances by varying a 

second parameter one can bring the two tangencies 

together and l ink up the local results about each tan- 

gency. We address one such situation. We consider 

perturbations of  a degenerate homoclinic  tangency to 

a saddle l imit  cycle with posit ive multipliers.  The un- 

perturbed system has a cycle with unstable and stable 

manifolds which coincide without intersecting trans- 

versely. The perturbations we consider cause the man- 
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Fig. 1. A sketch of  the arrangement  of  the manifolds of the periodic 
orbit on a surface of section for • = 0 (above) ,  and • non-zero 

(be low) .  

ifolds to buckle (intersecting transversely) and hence 
split,the single degenerate tangency into two (see 
Fig. l ) .  We construct a two-parameter return map 
modeling this situation. One parameter, /z, is used to 
control the passage of the manifolds through one an- 
other, while the other, e, is used to break the degener- 
acy and cause the manifolds to intersect transversely. 
We analyze the fixed points of the resulting map and 
find that in the plot of cycle period versus/z a count- 
able number of saddle-node bifurcations converge on 

each tangency, as in Gaspard and Wang [4]. In ad- 
dition, because E is small the map predicts how the 
cycles born near one tangency connect to those at the 
other. We find in the period versus/z plot that the pe- 
riodic orbits created in saddle-node bifurcations at the 
separate tangencies link together to form closed bub- 

bles. 
An example of the degenerate cycle arises in the 

flow studied by Laing [ 12]. The author studies the 
effects of perturbations that break the axisymmetry of 
the normal form of the saddle-node/Hopf bifurcation 
[9] : In the symmetric flow a two-torus collides in a 
global bifurcation with a single large amplitude limit 
cycle. At the collision the unstable and stable mani- 
folds of the cycle coincide without transverse intersec- 

tions. Perturbations which break the axisymmetry of 
the flow cause the manifolds to intersect transversely. 
Two successive tangencies now occur and mode lock- 
ing on the torus is observed. Numerical investigations 
by Laing [ 12] indicate that the boundaries of the res- 

onance tongues (curves of saddle-node bifurcations) 
associated with the torus accumulate upon the two ho- 
moclinic tangencies to the cycle. We present additional 
numerics on this flow which further support the con- 
clusions derived from our model map. We anticipate 
that cycles with this weakly broken degeneracy (and 
similar situations such as in Kirk [ 11 ] ) will arise com- 

monly near saddle-node/Hopf bifurcations and other 
related codimension-two points, and that the approach 
we follow here will be useful in understanding their 
respective dynamics. 

2. Map construction 

We consider a two-parameter family of vector fields 
in ~3. When parameters ( /z ,e)  = (0 ,0)  the phase 
space flow possesses a limit cycle in which one branch 
of the stable manifold coincides with one branch of 
the unstable manifold. The cycle is unstable with mul- 

tipliers Au > 1 and 0 < As < 1. We consider a small 
return plane 2 which is pierced transversely by the cy- 
cle at a single point. We take this point as the origin of 
a coordinate system (x, y) on the return plane with x 
measured along the local stable manifold and y along 
the unstable one as depicted in Fig, 2. Near the  off- 
gin (x, y) = (0 ,0)  the flow induces a return mapping 
that we approximate by the linear map L : 2 --+ 

x --+ A s x ,  y --+ Auy .  (1)  

We define two additional return sections 26 and 2b 

each lying in 2: 

2a = { ( x , y ) l  - 8 < x < 8, Yo <_ Y <_ A,yo } ,  

2 b = { ( x , y ) l a s X O < < _ X < X o , - - 8 < y < 8 } ,  (2) 

where xo, Y0, and ~ are small constants greater than 
zero (see Fig. 2). 

Our goal is to construct an approximate return map 
on 2a that models the dynamics of the flow. The return 
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2.1. Boundary conditions 
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Fig. 2. The limit cycle pierces the section ,~ at (x,y) = (0,0). 
The unstable manifold lies along x = 0, while the stable manifold 
lies along y = 0. The linear flow takes points on 2:b to ~a; the 
global flow takes points from 2;o to 2:b. 

map is constructed by composing two maps, a global 

map and a local map. The global map, G, takes points 

on ~ to Sb while the local map L takes points on ~b 
back to ~a. This is a common approach used widely 

throughout the literature (see [ 14] ). Often the local 

map is taken to be the linear approximation to the 
map induced by the flow near the limit cycle (as done 

in [4] and as we have done in Eq. (1 ) ) .  The global 

map typically is approximated by a Taylor expansion 
about the unstable manifold (points on ~a near the 

intersection o f  the unstable manifold with .S~ (the y- 

axis) follow the manifold to ~b).  
Although our local map is the usual linear approx- 

imation, the construction of  our global map differs 
considerably from the usual approach. Because we are 

interested in relating orbits associated with two tan- 

gcncies, it will be necessary to consider behavior of  

our maps on the boundaries of  the return sections. In 
previous works the dynamics of  the return maps stud- 

ied do not encounter the section boundaries and the 
complications that result do not arise. These additional 
complications limit our ability to construct an explicit 

map G of  the most general nature; however we do con- 
struct one example map G that exhibits the essential 
geometric features one would expect for the situation 
we consider. Before constructing our global map, we 
discuss these boundary conditions. 

An important feature of  the definition of  the return 
sections Xa and Xb is that the linear map L takes the 

lower boundary y = Y0 of  £a to its upper boundary 

y = ,tuYo, while L takes the right boundary x = x0 of  
2b onto its left boundary x = AsXo. Thus a point A = 

(x, Y0) E ~ belongs to the same orbit as the point 
B = (,~sX, Auy0) on the upper boundary, i.e. L ( A )  = 

B, and a similar correspondence occurs on Xb. 
We wish to ensure that the related boundary points 

A and B remain on the same orbit under the global 

map G. In general the entire lower boundary curve y = 

Y0 of  ~ under G will form a curve on ~ intersecting 

the x-axis at the point we have labeled (x0, 0).  For 

the construction of  our model map we assume that 
for small enough 6 this curve can be taken vertical 

to coincide with our definition of  the right boundary 

x = x0 of  £b- Thus G(A)  lies on the x = x0 boundary 

and its iterate LG(A)  under the local map lies on the 

left boundary x = AsXo. The point B = L ( A )  on Xa 
must get mapped under G to the left boundary point 

LG( A ) E Xb, or 

LG(A)  = G L ( A ) ,  (3) 

for all boundary points A = (x, y0) C £a- This is our 
first boundary condition. 

The map G also must satisfy a boundary condition 
on its first derivative. Consider a tangent vector v ( A )  

in the tangent space (]~2) of  the point A. Under the lo- 
cal map the vector is mapped to v ( B )  = DxL .  v (A )  = 

L. v ( A )  at the point B, where D x L  (= L) is the linear 

part of  L. Under the global map G, vectors v (A) and 

v( B) become respectively vectors DxGIA . v( A ) and 

DxG[B • v ( B )  in the respective tangent spaces of  the 

points G(A) ,  G(B)  E £b. (Here DxGIA and DxG[8 
are the linear part of  G, evaluated at A and B, respec- 

tively.) We would like the vector DxG[A. v ( A )  at the 
right boundary point G(A)  of  2b to be mapped under 

L to DxG[B. v ( B )  at the left boundary point G(B) ,  or 

DxG]B - v( B) = LDxG[A " v( A ) . (4) 

Since v ( B ) =  L . v ( A )  and B = L ( A )  this requirement 
becomes our second boundary condition 
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Fig. 3. The behavior of  the intersection of the unstable manifold 
with Xt). The parameter s = 0 for the upper three sections, while 
E > 0 below. The parameter /z  is positive for sections on the left 
while negative on the right. 

DxGIL(A)L = LDxGIA, (5) 

for all boundary points A = (x, yo) E 2~. 

2.2. The global map 

We now construct an example global mapping G : 
2 a --+ 2 b in two steps. We first consider how the 
intersection of the unstable manifold with 2a (i.e. the 
curve x = 0) is mapped to the section 2b and how this 
mapping depends on the parameters/z and E. We then 
consider how points on 2a near the unstable manifold 
are mapped to 2b. 

to the left boundary point (A,x0, Au/z) E 2b. This is 
accomplished if G satisfies the boundary condition 

(4). 
The mapping of the remaining points of the y-axis 

on 2~ to 2b by G depends upon e in the following 
manner. When e = 0 we assume that as/~ approaches 
zero the unstable manifold approaches a "flat" tan- 
gency with the stable manifold, and at/~ = 0 the two 
manifolds coincide. When E # 0 we assume the un- 
stable manifold buckles in a simple manner producing 

two successive tangencies with variable ~ (one could 
imagine and consider more complicated deformations 
giving rise to additional tangencies). Fig. 3 depicts 
this behavior on 2b. 

The construction of G begins by focusing on its 

mapping of the unstable manifold from 2o to the sec- 
tion 2o incorporating the desired (/x, e) dependence. 
We parametrize the intersection of the unstable mani- 
fold with 2b as 

Xb = ¢(Ya) ,  

yb = aYa /YO + ~ f ( Y a )  , 

where (0, Ya) E Xa, (Xb, Yb) 

(6) 

C 2b, and ¢ ( y )  and 
f ( y )  are non-linear functions. The function ¢ ( y )  
should decrease monotonically from x0 to AsXo as y 
varies from Y0 to A, y0, and following the application of 
Eq. (4) to Eq. (7) at the boundary point A = (0, Y0), 
we obtain the boundary conditions 

2.3. Mapping the unstable manifold 

The manner in which the unstable manifold is 
mapped from Xa to Zb under G depends upon the 
parameters (/z, e) as illustrated in Fig. 3. The pa- 
rameter /x provides a measure of the separation or 
splitting between the stable and unstable manifolds 
on the section 2b. The unstable manifold intersects 
2a along the y-axis between y0 and A, y0 and we re- 
quire G to take the lower end point (0, Y0) in Xa to 
the right boundary point (x0,/z) of ~b- Thus ].£ be- 
haves as a splitting parameter. The map G should also 
maintain the identification of the end points (0, Yo) 
and (0, A,y0) as points of  the same trajectory. Since 
L takes (x0,/x) on ~b to (Asx0, Au/z) also on Xb, the 
map G must take the upper end point (0, Auy0) E £a 

¢(yo)  = x o ,  ¢ ( & y o )  = &xo,  

f(AuYo) = Auf(Yo) . (7) 

The remaining condition (6) provides further bound- 
ary constraints on ¢ ( y )  and f(y), 

¢ ' (a .yo) /¢ ' ( yo)  = A,/ . t , ,  (8) 

f ' (  A, yo) = f ' (Yo) . (9) 

In order to maintain/z as a splitting parameter when 
e is non-zero in Eq. (7 ) ,  we further restrict our at- 

tention to functions f(y) which satisfy, in addition to 

Eqs. (8) and (10), the following: 

f (yo)  = f (A.yo)  = O. (10) 

To ensure two successive tangencies we consider func- 
tions f ( y )  which have a single quadratic maximum 
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and minimum on the interval [Y0, &y0], as for exam- 
ple, ~uYo Ls~ 

f ( y )  = sin{27r(y - yo)/(YoAu - Y0)}, (11) 

and assume the extrema are not on the boundaries so 

that f ' (Yo) 4= 0 and f'(Auyo) ~ O. 
To obtain an example function 05(y) satisfying the 

above boundary conditions we begin by looking for a 

function q5 which takes all the points Au"Y0 along the y- 
axis to the corresponding points A'~xo along the x-axis, 

i.e. qS(,~y0) = A~x0 for each integer n. A particularly 

simple function is q~(y) = AsnX0 y/(A~yo) where we 
think of n as a function of y such that y = An(y)y O. To 
get values for ~b(y) between the boundary points we 

generalize n to take on continuum values, 

qb(y) = xo (As/ Au) n(y) Y/Yo , 

n(y)  -- log(y/yo) / log au . (12) 

We emphasize that for our global map we are only con- 
cerned with values of  n between 0 and 1. We merely 

hope that the function ~b which takes all discrete points 
A,ny0 along the y-axis to corresponding points along 
the x-axis might provide the desired stretching behav- 

ior on the smaller continuous interval (yo, AuYo). In 
fact the function so constructed satisfies relation (8) 
and upon calculating the derivative, 

qS'(y) - ~b(y) logAs (13) 
y log ,~u ' 

we see that relation (10) is also satisfied. 
The mapping (7) of the unstable manifold to Xb has 

the desired geometric properties. For non-zero e the 
variation of/z through zero gives rise to two successive 
tangencies, while for zero e the system approaches 
the degenerate tangency where the two manifolds co- 
incide. Further, behavior at the x =  x0 and x = AsXO 
boundaries of Eb is consistent with condition (4) in 
that the linear flow L maps the right boundary inter- 
section point of the unstable manifold to the intersec- 
tion on the left (satisfying a slope boundary condition 
given by Eq. (6 ) ) .  

\, 

Za 

',,,, 

(g+~/x)t', 1 
"',,, 1~ b 

k s x o xo 

Fig. 4. One of a family of curves given by (15) parametrized by 
the intercept Yc is shown (dashed curve) on Xa. The curve under 
the global map (16) is mapped to a curve which lies above the 
unstable manifold (solid curve) on Xb. 

2.4. Completing the global map 

We now incorporate into G the ability to map points 

(xa,ya) E Sa near the unstable manifold to the sec- 
tion ~b. Rather than focusing on individual points 
(xa,ya), it is geometrically beneficial to consider 
curves in 2a. Consider the following decomposition 
of 2a into curves parametrized by their intersections 

with the boundary y = Y0 at the point (2, Y0)- See 
Fig. 4. The curve with intercept (2, Y0) intersects the 

upper boundary y = AuYO at the point (As2, AuYo). 
An equation of the curve through these end points 
and others of the form (An2, anyo) is 

X = 2 (l~s/l~u) n(y) Y/Yo, (14) 

where n(y) is defined in (13). For each value of 2, 
Eq. (15) produces a curve on Ea with end points 

A ( 2 ) = (2, Yo ) and B ( 2 ) = (As2, huYo ) which lie on 
the same trajectory, i.e. L(A)  = B. Further, for each 
(xa,Ya) near the unstable manifold on 2a there is a 
unique curve passing though it possessing an intercept 
2. 

We now adjust the map for the unstable mani- 
fold (7) to map in addition the nearby curves (15) 
and hence nearby points. We need the resulting map 
G to behave properly at the boundaries. In particular 
G(A) should be on the right (Xb = x0) boundary 
of Xb while G(B) should lie on the left boundary. 
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The linear flow L should take G ( A )  to G ( B )  so 

that L G ( A )  = G ( B )  as required by Eq. (4).  These 
properties are incorporated in our complete map G, 

xb = qS(ya),  
(15) 

Yb = {I-* + TX(Xa, Ya)} Ya/YO + e f ( y a ) ,  

where Y is a positive constant and where we now con- 

sider 2 as a function of  xa and ya. In other words, given 

a point (xo, yo) we compute 2 by inverting Eq. (15),  

X( Xa, Ya) = Xa (As/ Au) -n(ya) YO/Ya . (16) 

Geometrically, a curve on Xa with a fixed value of  2 

gets mapped to Xb precisely the same way that the 

unstable manifold does for a value o f / ~  shifted by 

an amount 3/2. See Fig. 4. Computation shows that G 

defined by (16) satisfies boundary conditions (4) and 
(6) ,  where qS(ya) and X(Xa,Ya) are given by (13) 

and (17) respectively and f ( Y a )  satisfies (10),  (11).  
Now that a local and global mapping have been de- 

fined we can specify the dynamics of  a point (x, y # 

Auy0) E 2~: the next return of  the point (x, y)  is given 
by LInG(x, y )  where m is the smallest number o f  it- 

erations of  L needed to map the point G ( x , y )  E Xb 

to 2a. The dynamics of  a point (x ,  Auyo) E 2a on 
the upper boundary is given by the dynamics of  the 

corresponding point ( a s lX,  Y0) E Ea on the lower 
boundary. (In this way the orbits through both of  these 
points are considered to have the same number m of  

iterations of  L.) In what follows we consider the map 
G with the expressions (13) and (17) for ~b(y) and 

( x, y) ,  respectively. An explicit expression for f (y)  
will not be needed. 

~Y/Yo, - ~f(Y) 

(a) Y0 Y * 

)~u Y0 

(b) 

Y/Yo' - ef(y) 

[$< ~sn 
-y 

Fig. 5. (a) A graphical solution to (18) yields the values y* and 
/x* in which the stable and unstable manifolds of the limit cycle 
are tangent. For the solution shown /z* < 0. Another tangency 
occurs when/x > 0. (b) A graphical solution to (23) yields the 
values of y and/3 for simple fixed points. At the tangency given 
by/3 =/3sn a single orbit appears which splits into two orbits as 
/3 decreases. 

on the same plot. With e fixed at some non-zero value 
and f ( y )  of the form depicted in Fig. 5a, the two 

curves lzy/yo and - E f ( y )  are tangent at two differ- 
ent values of/z*,  one positive and one negative. Note 

that the two values of  y* are the solutions to 

y f ' ( y )  = f ( y ) ,  (18) 

3. Primary tangencies 

A primary tangency occurs when the unstable man- 

ifold on No with Xa = 0 arrives at Eb tangent to the 
stable manifold Yb = 0 under the global map G. This 
occurs for points (0, y*) E Ya at parameters (/x*, E) 
when 

tz* y*/yo  + e f ( y * )  = O, 
(17) 

tz * /yo -4- E f '  ( y  *) = O . 

These equations are most easily understood graphi- 
cally. One plots /zy/y0 and - e f ( y )  as functions of  y 

independent of/z .  Given a solution y* to Eq. (19) the 
value/x* is given by 

/z* = Y0 °- . 
- e f 2 ¢ ( y  ) .  (19) 

In fact since the two roots y* of  (19) are independent 
o f /x  and e the curves of  homoclinic tangency (given 
by (20) )  are readily identified as two straight lines in 
the (/~, e) parameter plane. The lines have opposite 

signed slopes and form a wedge emanating from the 
origin (/z = 0, e = 0). 
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The simplest periodic orbits of the flow are the tra- 
jectories which link up with themselves after only one 
pass through the global region of the flow. These cor- 
respond to fixed points (x, y) c Sa of our mapping 
which satisfy (x, y) = LInG(x, y) ,  or more explicitly 

x = A~'qS(y), 

y=A~'  { [/z + y.~(x,y)]  Y/Yo + e f ( y )  } . (20) 

The substitution of the first equation x = AsmqS(y) into 
the second equation yields an equation for y decoupled 
from x, 

y = A ~ ' { ( t x + y X o A n s ' ) y / y o + e f ( y )  } . (21) 

Notice that because 2(x,  y) = x0A~ m is constant for 
fixed points of a given m on Na, these fixed points lie 
on the same curve (15). 

For graphical interpretation, Eq. (22) can be re- 
expressed as 

fly = - e f ( y ) ,  (22) 

where 

fi = Iz/Yo - (Y0/Au m - yxoAT') lYo. (23) 

We are primarily interested in the behavior of the fixed 
points as /z is varied through zero creating and de- 

stroying the primary tangencies. For this reason we 
continue to consider e fixed and/z variable. 

A plot of fly and - e f ( y )  as functions of  y on 
the same graph is shown in Fig. 5b. The intersections 
of the two curves correspond to fixed-point solutions 
to (23). As /z varies from positive to negative for 
large enough m the slope/3 of the curve fly also goes 
from positive to negative. A fixed point first appears 
as the curves become tangent at a positive fl value. 
This fixed point splits in two after the tangency as/3 
decreases. At /3 = 0, one of the fixed points passes 
through the top boundary y = Auyo of the return sec- 
tion, and another fixed point simultaneously appears 
at the lower boundary, y = Y0. Since the linear map L 
maps the lower boundary point to the upper, the two 
fixed points are identified with the same periodic cy- 
cle in the flow. As/3 decreases further the two distinct 

7 

fixed points merge again in a second saddle-node tan- 

gency and disappear. Thus as /x  varies from positive 
to negative, two cycles are created in a saddle-node 
bifurcation and then the same two cycles merge and 
are destroyed in another saddle-node bifurcation. 

Now we find where the saddle-node bifurcations 
occur relative to the primary homoclinic tangencies. 
The saddle nodes occur when 

fl = - e f '  (y)  , (24) 

and a simple computation shows that the correspond- 
A m ing fixed point ( s ~b(y), y) is also given by a solu- 

tion of Eq. (19). (Thus the fixed point at the saddle- 
node bifurcation has y = y*, the same y value yielding 
a primary tangency, although the x and/z  values dif- 
fer.) Combining Eqs. (19), (20) and (25) evaluated 
at y = y*, we find that at a saddle-node bifurcation 

f s n  = [.I"*/Yo, and therefore from (24) the value/Zsn 
of /z  at the bifurcation is 

]-bsn = 1-~* -t- ] (Y0 -- "yXO(,)tu~s) m} - ( 2 5 )  
a2 

Thus the saddle-node bifurcations converge to/x* (see 
Eq. (20))  from above with increasing m for the case 
auAs < 1, while they converge from below for auas > 
1 (~, > 0). 

Fig. 6 depicts the curves of saddle-node bifurca- 
tions in the (/z, e) parameter space given by Eq. (26) 

for AuAs < 1. The curves accumulate upon the wedge 
formed by the primary homoclinic tangency curves 
(Eq. (20)) .  Also shown is a period T versus/z sketch 
for the limit cycles along a fixed e parameter path. 
Since two orbits born near one tangency are the same 

two that annihilate at the other the orbits trace out 
an isolated loop or 'bubble' in this plot. Each iso- 
lated bubble corresponds to limit cycles which pass 
through the local regime under L the same integral 
number (m) of times. If  the primary limit cycle has 
a period ~- then the separation between bubbles along 
the T-axis is approximately ~- (see for example Gas- 
pard and Wang [4] ). 

Consideration of the phase space geometry of the 
flow can provide further insight into the appearance 
of the isolated bubbles in Fig. 6. Note that a simple 
limit cycle is constrained to remain within the approx- 
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B1 0 ~t2 
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~t I 0 ,tL 2 }.L 

(a) (b) 

Fig. 6. Shown in (a) are curves of saddle-node bifurcations in the (p., e) parameter space which converge upon the leading tangency 
curve (bold curve, ~ > 0) and the trailing tangency curve (bold curve,/x < 0). Shown in (b) is a sketch of period T versus /z for the 
limit cycles along a parameter path with fixed E (dashed line shown in (a)). The leading tangency occurs at/x2, while trailing occurs at 
/t£ 1. For both (a) and (b) auAs < 1. 

imately toroidal-shaped phase space region bounded 
by the stable and unstable manifolds of  the primary 
limit cycle. To smoothly deform a simple cycle in such 
a way as to increase or decrease the number of  turns it 
makes about the primary cycle would force the simple 
cycle to cross at least one of  the invariant manifolds 
of  the primary limit cycle- -something that cannot oc- 

cur. Therefore orbits represented by a particular bub- 
ble cannot be smoothly deformed by the variation of 

parameters (/x and E) into orbits represented by other 
bubbles, ensuring the isolation of  the bubbles in Fig. 6. 
However, should the parameters of  a system stray far 
enough from the/x  = 0, E = 0 case it is possible, if  not 
likely, that the global manifolds of  the primary cycle 
will evolve far enough from the assumed configura- 
tions depicted in Fig. 1 that the geometry no longer 
provides a sufficient constraint and orbits from one 
bubble might deform smoothly into orbits from other 
bubbles. 

5. Stability of simple fixed points 

An eigenvalue, A, of  a simple fixed point (x,  y) E 
Xa given by (21) satisfies 

A 2 - TA + D = 0 ,  (26) 

where 

T = + D ,  (27) F~(y)  

and 

F ~ ( y )  = A~ { (~  + ya~ 'x0)/Yo + E f ' ( y )  } . (28) 

From the elimination of  fl  between Eqs. (24) and 
(25) we see that the saddle-node bifurcation occurs 
when F ~ ( y )  = 1. This implies that the eigenvalues for 
the fixed point at the saddle node are Asn= 1, D. Note 
that D is positive since log As < 0 and y > 0. Thus 
when Au2t~ < 1 and for large enough m the eigenvalue 
D is less than unity and one of the two emerging orbits 
(the node) will be stable, while when A, As > 1 the 
orbits are unstable. 

The stable orbit can lose stability through a period- 
doubling instability. This occurs when one eigenvalue 
is - 1 .  The other eigenvalue is - D  which is also nega- 
tive and has a small magnitude, [DI ~ ( a , a ~ )  m. This 
instability can be described graphically by considering 
the expression F'~(y)  when A = - 1 .  When A = - 1  
Eq. (27) yields 1 + T + D = 0 which when combined 

with expressions (28) produces 

. . . . . .  m XO log A~ 
F ~ ( y )  = - 1 .  Z y t A u a s )  Y - ~ ~ u  " (29) 

The substitution of the definition o f / 3  (Eq. (24) )  
and the definition of  F'~(y)  (Eq. (29 ) )  into Eq. (30) 
yields 

D = - y ( A u A s ) m ( x o l o g A s ) / ( y o l o g A u ) ,  f l  = - e f ' ( y )  - Q / A  m , (30) 
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where 

Q = 2 - 2 y ( A ~ A u ) m ( x o l o g A s ) / ( y o l o g A u ) .  (31) 

Note that Q is positive and recall that fixed points 

satisfy Eq. (23), f l y  = - • f ( y ) .  For large m Eq. (3 l )  
approaches Eq. (25) and graphically the period- 

doubling fixed point moves closer towards the point 
of saddle-node tangency. To determine which of the 
two orbits appearing after the saddle-node bifurcation 
undergoes period doubling we refer to Fig. 5b. The 

intersection point at which the slope fl of the straight 
line is less than the slope of the curve - e f t ( y )  corre- 
sponds to the fixed point that period doubles (as given 
by Eq. 31). Thus the left intersection point on the 

fl <flsn curve of Fig. 5b undergoes period doubling. 
In summary, at the first saddle node (/x > 0) the sta- 

ble orbit has a smaller y value than the saddle and then 
shortly loses stability through period doubling. The 
now unstable orbit eventually becomes stable again in 
a reverse period-doubling bifurcation just prior to dis- 
appearing in the final saddle-node bifurcation (/x < 
0). During the approach to the final saddle-node bi- 
furcation the node orbit now has the larger y value 
(independent of the sign of • ) .  

6 .  T h e  6 = 0 c a s e  

An important special case to consider is when the 
stable and unstable manifolds have a "flat" tangency, 

as when • = 0. In the flow to be considered in Sec- 
tion 7 the manifolds behave this way as a consequence 
of rotational symmetry. In this flow symmetry allows 
for the variable associated with the phase of the limit 
cycle to decouple from the equations for the remain- 
ing two variables. This effectively reduces the three- 
dimensional flow to a flow on a plane. (This reduc- 
tion to a planar flow arises frequently in the analy- 
sis of  many normal forms [9] .) The upper sketch of 
Fig. 1 illustrates the relation of such a planar flow to 
the three-dimensional flow at the homoclinic connec- 
tion. In the planar flow the connection is a homoclinic 
loop to a saddle fixed point. It is well known that ap- 
propriate perturbations to a planar flow with a homo- 
clinic loop give rise to a limit cycle (see [ 14] ). Fur- 

ther a limit cycle in the planar flow corresponds to an 
invariant two-torus in the three-dimensional flow. 

For the unperturbed flow considered in Section 7, 
the two frequencies of the torus remain indepen- 
dent and frequency-locking cannot occur. Perturba- 
tions which break the rotational symmetry induce 

frequency-locking. We now demonstrate that the be- 
havior of our map for/x > 0 and E = 0 is consistent 
with the presence of an invariant torus in the corre- 
sponding flow. 

For e = 0 and /x positive and small enough, the 
invariant torus should intersect Xa and .Sb. The inter- 
section should appear as an invariant curve on each of 
these return sections (recall that Sa and 2b are small 
sections unlike the section shown in Fig. 1 ). Repeat- 
ing the analysis in Sections 4 and 5 with e = 0 we 
find that the simple fixed points of our map for a given 
m correspond to the entire set of points (x, y) on the 
curve (15) with ~ = X0As m at the isolated value of/x, 

1 
/x = --Am {Y0 - yxo(AuA,)  m} , (32) 

and that these points are stable when AuAs < 1 and 
unstable when AuAs > 1. This invariant curve of fixed 
points is the intersection of the torus with Xa. The ratio 
of frequencies on the torus is 1 : (m + k), where k 
rotations about the primary periodic orbit occur during 
the global portion of the flow which takes a point from 
2?a to Xb. For other values of/X the torus still exists, 
but the ratio of its frequencies (its rotation number) 
is of a different form. 

When e is non-zero, only two periodic orbits per- 
sist from the continuum of periodic orbits as demon- 
strated in Section 4. This is consistent with frequency- 
locking on the torus in the three-dimensional flow. 
These two orbits persist in a resonance tongue in the 
(/X, e) parameter space. The resonance tongue with 
rotation number 1 / (m + k) branches off the/x-axis at 
a value given by (33). With increasing m the tongues 
approach the (/x, e) curves corresponding to leading 
and trailing homoclinic tangencies. The tongues for 
saddle-node bifurcations of the simplest fixed points 
are sketched in the (/x, e) plane in Fig. 6a. 
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7. A numerical example 

Laing [ 12] studies the following equations: 

c~ =q07 + io9 ÷ az + KI Iql 2 q-K2zq) q- K 3 Z  3 , 

= v  - z 2 -  ]q l  2,  ( 3 3 )  

where q E (2; ~o,o~,tq,K2, K3,Z E IR; i e = -1 ,  and 

z, and r/ are real parameters. When Ke = #<3 = 0 the 

equations are a rescaled truncation of the normal form 

of the saddle-node/Hopf bifurcation [ 3,9 ] with a and 

K1 chosen real. In this case, the flow of Eq. (34) 
is axisymmetric about the z-axis, and the z-axis is 
also dynamically invariant. As a consequence of the 
axisymmetry of the flow, the substitution q = re i° 

yields the decoupled equations 

=rOT + a z  + Klr 2) , 

~_--~,--r2-- Z 2, 

0 =oJ. (34) 

Since the ? and £ equations do not depend on 0, the 

system can be analyzed as a planar vector field. A 

non-zero K2 breaks the axisymmetry of the flow, while 

a non-zero K 3 breaks the z-axis invariance. In these 
cases the equations no longer decouple and the full 

three-dimensional flow (34) must be considered. 

At the parameter values 

(r/, v) = ( - a ( 1  + c0/2tq ,ce(2  + a)/4K2),  (35) 

the Jacobian matrix of the planar vector field evalu- 
ated at the fixed point ( r , z )  = ( ~ ,  a/2Kl)  
has a repeated, non-semisimple eigenvalue of 0 and 
thus undergoes a Takens-Bogdanov bifurcation. The 
relevant corresponding bifurcation set and phase por- 
traits for Eq. (35) are shown in Fig. 7. In the planar 

phase portraits r is plotted horizontally and z verti- 
cally. To obtain the full three-dimensional flow, each 
sketch must be rotated about the z-axis. (Figs. 7-11 
were obtained using the software AUTO [2] .) 

Note that in the region of parameter space enclosed 
by the curves of secondary Hopf and homoclinic bi- 
furcations, there exists a periodic orbit in the planar 
flow which corresponds to a two-toms in the three- 
dimensional flow. Because the flow is axisymmetric, 

the two frequencies associated with motion on the 

toms are independent, and there is no frequency lock- 

ing. The homoclinic bifurcation occurs as the torus 
collides with a limit cycle (a fixed point in the planar 

representation) whose multipliers satisfy 0 < AsA~ < 
1. This is the e = 0 case considered in Section 6. We 

emphasize that our model map addresses the dynamics 

associated with systems which lie near a point on the 

curve of homoclinic bifurcation of Fig. 7 and therefore 

does not capture behavior near the other bifurcation 

curves (nor in particular near the TB point). 

7.1. Breaking the axisymmetry 

We now examine the case when K2 v~ 0, but K3 

is still zero. This corresponds to setting e non-zero in 

our model map and causes the curve of homoclinic 

bifurcations in Fig. 7 to split into a region bounded 

by the leading and trailing homoclinic tangencies, as 

shown in Fig. 8. It also causes locking on the toms, 
which is evident by the appearance of a countable 

infinity of resonance (Arnol'd) tongues. 
A few of these tongues (with rotation numbers of 

the form l / n )  are shown in Fig. 9, together with the 

curves already shown in Fig. 8. The edges of the res- 
onance tongues are saddle-node bifurcations of peri- 

odic orbits, and within each tongue there are two or- 

bits with the specified rotation number. 

Figs. 7-9 serve to illustrate how the homoclinic bi- 

furcation to a limit cycle that we have analyzed in Sec- 

tions 2-6 can appear in an analysis of equations with 
approximate S 1 symmetry (as often arises in normal 
forms involving a Hopf interaction). However, Fig. 9 
should be compared to Fig. 6a with caution as the pa- 
rameters being varied in the respective plots do not 
directly correspond. The relations between parameters 

of the flow (v, K2,~) and those in the map (/~,e) 
are as follows. The variation of the parameter FL in 
the map causes the unstable and stable manifolds to 
pass through one another. This is accomplished in the 

flow by varying v while fixing K2 and ~7. Thus the 
(loose) identification of/~ with z, is appropriate. The 
parameters e (in the model map) and K2 (in the flow) 
can similarly be identified; increasing these from zero 
causes the stable and unstable manifolds to buckle. A 
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Fig. 7. Bifurcation set and phase portraits for Eqs. (35).  The horizontal axis is r/, while the vertical is p - r/2/16 + r/f4. The phase 
portraits have r plotted horizontally and z vertically. To obtain the full three-dimensional flow, each sketch must be rotated about the 
z-axis (the vertical line at the left of  each sketch). Parameter values are o~ = 3, K1 = 1. 
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Fig. 8. Homoclinic region and phase portraits near the homoclinic region for Eqs. (34) ,  with parameter values a = 3, ~o = 3.75, KI = 1, 
K2 = 0.2, K3 = 0. The phase portraits show the dynamics induced on a cross section of  the flow chosen to include the z-axis. The horizontal 
axis is r/, while the vertical is 1, - r/2/16 + ~//4. 
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Fig• 9. Boundaries of the resonance tongues with rotation numbers 1/5, 1/6, I /7  and I /8,  together with the edges of the homoclinic 
region. The tongues are seen to accumulate on the edges of the homoclinic region (shown dashed) as the rotation number tends to zero. 
Parameter values and axes are the same as in Fig. 8, 

third parameter in the flow ~7 does not have a direct 
analogue in the map. The variation of this parameter 
moves the system away from the Takens-Bogdanov 
point and controls the size of the primary limit cycle• 
Since our map is based on a limit cycle with fixed size, 
the plot of/x versus e in Fig. 6a would correspond to a 

planar cross section at constant ~7 (not shown) through 
the parameter space (p, K2, r I) of the flow. Fig. 9 is a 
section at fixed K2. 

TO verify that the simplest periodic orbits form 
closed loops or bubbles in the period versus param- 
eter diagrams as predicted in Section 4, we plot in 
Fig. 10 the period versus v at ~7 = -5 .5 ,  K2 = 0.2 of 
several limit cycles for Eq. (34). What appear to be 
horizontal line segments in Fig. 10 are in fact closed 
bubbles. One such bubble is shown in Fig. 11. Fig. 10 
should be compared with Fig. 6b. 

7.2. Breaking the axis-invariance 

When K3 is zero, the z-axis is dynamically invariant. 
The number of times a periodic orbit links the z-axis 

is therefore invariant. Thus the closed loops in Fig. 10 
may not be surprising. However, the trajectories of the 
periodic orbits of Fig. 10 lie in a doughnut region of 

phase space that is well separated from the z-axis as 
noted in Section 4. Thus whether or not the z-axis is 
invariant is not directly relevant for the behavior of the 
periodic orbits formed in the homoclinic bifurcation of 
the primary cycle. This can be demonstrated by setting 
K3 v~ 0 and producing a plot similar to Fig. 10. This 
is done in Ref. [ 12] and the results are qualitatively 
identical to the axis-invariant case, i.e. the periodic 
orbits form closed loops in period-parameter space• 

8. Concluding remarks 

We have considered a homoclinic tangency to a limit 
cycle in which the stable and unstable manifolds pass 
through two successive tangencies. The two tangen- 
cies occur close together in parameter space and we 
have been able to connect up orbits appearing at one 
tangency with those at another. For both the numerics 
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Fig. 10. Plot of  period versus ~, at r / =  - 5 . 5  for periodic orbits corresponding to tongues with rotation numbers 1/5, 1/6, 1/7 and 1/8, 
for Eqs. (34) with parameters as in Fig. 8. (The 1/5 tongue has the lowest period, the 1/8, the highest.) What appear to be straight lines 
are actually closed loops. 
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Fig. 11. Enlargement of  the plot (period versus l, at r / =  - 5 . 5 )  for the tongue with rotation number 1/7 shown in Fig. 10. Corresponding 
plots for other tongties are qualitatively the same demonstrating that the horizontal line segments of Fig. 10 are actually closed loops. 
Parameters as in Fig. 8. 
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of a flow and our model map, a plot of orbit period 

versus a parameter path through the two tangencies 

yields closed bubbles. 

The S i l ' n ikov-Hopf  bifurcation [ 10] provides an- 

other example where two tangency curves come to- 

gether in parameter space and the associated saddle- 

node bifurcations at the separate tangencies may be 

linked together. Period versus parameter plots in this 

situation also show the accumulation of saddle-node 

bifurcations on homoclinic tangencies, but in this case 

the orbits are linked by a single curve which zigzags in 

a bifurcation diagram similar to the Sil 'nikov case [ 7 ]. 

This difference can be attributed to the global arrange- 

ments of the manifolds of the periodic orbit. 

The global bifurcation we have studied can be inter- 

preted as a collision between a two-toms and the limit 

cycle. In a similar situation, Kirk [ 11 ] studies a torus 

which collides with two fixed points. When the fixed 

points lie on an invariant axis the orbits are forced to 

have fixed rotation numbers and the resulting period 

versus parameter plots have closed bubbles much as 

in our Fig. 6. Unlike our case, terms that break the 

invariance of the axis cause the bubble diagrams to 

break open. Our diagrams retain the closed bubbles as 

a consequence of the global arrangements of the sta- 

ble and unstable manifolds. 

Finally, we addressed the global bifurcation from 

a qualitative and geometric perspective with the hope 

that we have captured the behavior of a large class 

of systems. Analytic results providing parameter val- 

ues for the accumulation of 'wedges'  bounded by 

saddle-node bifurcations on a homoclinic region have 

been obtained in several specific systems (Greenspan 

and Holmes [ 8 ], Chow, Hale and Mallet-Paret [ 1 ] ). 

These results have been derived using Melnikov the- 

ory for which an analytic expression for the unper- 

turbed homoclinic orbit is needed. 
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