Two—bump solutions of Amari—type models of
neuronal pattern formation

Carlo R. Laing ™ and William C. Troy"

& Institute of Information and Mathematical Sciences, Massey University,
Auckland, New Zealand

b Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260,
USA.

Abstract
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results imply that lateral inhibition type coupling is not sufficient to produce stable
patterns that are more complex than single isolated patches of high activity.
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1 Introduction

Pattern formation in neuronal networks is an area of ongoing interest [6,7,11,12,14,17,18,30].
In this paper we investigate spatially localized regions of high activity, often referred to
as “bumps”. These are of interest in modeling working memory, the ability to remember
information over a time-scale of a few seconds [8,10,17,29]. Experiments on primates
show that there exist neurons that have elevated firing rates during the period that the
animal is “remembering” some aspect of an object or event [2,2224]. These neurons
are spatially localized in a location determined by the relevant aspect of the object or
event being remembered. Other possible applications of the models investigated here in-
clude the head—direction system [26,32], feature selectivity in the visual cortex [6,7,15],
the behaviour of infants repeatedly reaching towards objects [28], and robot naviga-
tion [12]. “Spiking” neuron models have been used to model bumps [8,14,17], as have
“rate” models [1,16,28,31].

In this paper we extend the 1977 work of Amari [1] who found single spatially localized
regions of high activity (bumps) in rate models of the form

o0

=—u(z,t) + / w(x —y)f(u(y,t)) dy + s(x,t) + h. (1.1)

—o0

Ju(x,t)
ot

Equation (1.1) models a single layer of neurons. The function u(z,t) denotes the
“synaptic drive” or “synaptic input” to a neural element at position z € (—o0,0)
and time ¢ > 0. The connection, or coupling, function w(z) determines the coupling
between elements, and the nonnegative function f(u) gives the firing rate, or activity, of
a neuron with input u. Neurons at a point & are said to be active if f(u(z,t)) > 0. The
function s(x,t) represents a variable external stimulus, and the parameter h denotes a
constant external stimulus applied uniformly to the entire neural field.

In Ref. [1] Amari investigates the dynamics of pattern formation in equation (1.1) when
w(z) has a “mexican hat” shape corresponding to the basic coupling known as lateral
inhibition (see Figure A.1). The defining feature of this type of coupling is that w(z) is
a continuous function which is positive at = 0, and changes sign exactly once on the
interval (0, 00), so that w(z) < 0 for large enough x. Amari also assumes that the firing
function f(u) is the Heaviside step function. Under the further simplifying assumption
that s(z,t) = 0, i.e. that there is no external stimulus, Amari studies the existence and
stability properties of stationary solutions of (1.1), which are solutions of

o

uw) = [ w(e = y)fuly) dy+h. (1.2
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The region of excitation of a solution of (1.2) is the set

R(u) = {z|u(x) > 0}. (1.3)

A solution for which R(u) is a bounded, connected, open interval is defined to be a
1-bump solution. Amari proves that, depending on the value of h, equation (1.2) has
zero, one or two 1-bump solutions. He also develops a stability criterion which shows
that when two 1-bump solutions coexist (see Figure A.3), then the “larger” of these is
a stable solution of the original equation (1.1), and the “smaller” solution is unstable.
If, for a solution of (1.2), R(u) consists of N disjoint, finite, connected, open intervals,
the solution u(x) is called an N-bump solution.

In this paper we extend the results described above and consider the general problem
of how stationary N-bump solutions form when N > 1. In [18] we derived a set of
reasonable assumptions on the functions w and f and began the study of this problem.
In particular, we assumed that the coupling w had infinitely many positive zeros (i.e. w
oscillated infinitely often between positive and negative values), as opposed to the single
positive zero that is characteristic of lateral inhibition. For a specific example of such a
coupling we found numerical evidence for the existence of several families of N-bump
solutions, some of which appear to be stable. However, because neural connections
in the brain cannot exist over arbitrarily large distances, it is equally important to
understand how multi-bump solutions form when the coupling w has only a finite
number of positive zeros.

Our primary goal is to understand the important features of coupling functions which
lead to stable multi-bump stationary solutions. In order to gain the deepest possible
insight our strategy here is to focus our attention on how 2-bump solutions form in
a hierarchy of increasingly complicated models. 2-bump solutions can be thought of
as the next most “complex” solutions after 1-bump solutions, and many of the ideas
used to investigate their existence and stability may also be applicable to the study of
multi-bump solutions. For each model we investigate the following important issues:

(1) Are there ranges of parameters for which zero, one or two 2-bump solutions exist? Do
families of solutions arise or disappear via a bifurcation phenomenon as a parameter
passes through a critical value? What are the qualitative properties of solutions (e.g.
shape, distance between bumps, etc)?

(77) Is there a range of parameters for which one or more 2-bump solutions exist, yet no
1-bump solution exists?

(131) Are any of the 2-bump solutions stable? Can stable 1-bump and 2-bump solutions
coexist?

In Section 2 we begin with a review of the techniques developed by Amari [1] to prove



the existence and stability of 1-bump solutions when the coupling is the basic lateral
inhibition type having just one positive zero. In Sections 3 and 4 we generalize Amari’s
results and develop methods to prove the existence, qualitative behavior and stability
of 2-bump solutions. We then apply these results to the lateral inhibition case and find
that there is a range of parameters over which families of 2—bump solutions do exist.
However, our analytical and numerical analyses indicate that these solutions are all
unstable. These results suggest that to obtain stable multi-bump solutions, the coupling
function should have more than one zero in (0, 00). Thus, in Section 5 we consider a
simple extension to the class of couplings which have exactly three positive zeros, so
that w(x) is alternately positive, negative, positive and finally negative as x increases
from 0 to infinity. Surprisingly, we now find that there is a range of parameters where
stable 2-bump solutions exist, together with stable 1-bump solutions. In Section 6 we
extend the model to two spatial dimensions and give numerical examples of 1-bump
and 2-bump solutions for specific examples of the couplings described above. In the
final section we summarize our results and discuss directions for future study of the
more general problem of N-bump formation when N > 1.

Our motivation for choosing a coupling function with more than one positive zero is
that this may better represent the connectivity known to exist in the prefrontal cortex,
where studies have shown that coupled groups of neurons lie on an approximate lat-
tice [3,13,19-21]. These connections are purely excitatory [6], and the positive sections
of the coupling function w(x) can be associated with them. There are also known to be
inhibitory connections which have a wider extent than the local excitatory ones [25],
and by adding their effect to the effect of the excitatory coupling, a coupling func-
tion with alternating positive and negative sections, as presented in Section 5, can be
obtained. This form of connectivity is thus a “bridge” between the lateral inhibition
used by previous authors [1,15,17] and the coupling with infinitely many zeros intro-
duced in [18], and by studying it we hope to understand better the essential ingredients
required for multi-bump solutions of equations of the form (1.1).

Other authors have also considered connectivity functions that incorporate the “patch-
y” nature of neural connections. Bressloff [5] recently investigated a two—dimensional
system for which the connectivity function was the sum of two functions, one rep-
resenting local connections, of a Mexican—hat type, and the other representing the
longer-range connections, which had the form of a weakly—decaying modulation of a
non—negative periodic function. By adding these two functions together, one can ob-
tain a weakly—decaying modulation of an approximately periodic function, with both
positive and negative connectivities, similar to both the family of functions presented
in [18] and to the function presented in Section 5. Bressloff et al. [6,7] have also studied
models for visual cortex in which both local connectivity and patchy longer-range con-
nectivities are incorporated. They assumed that the patches were located on a precise
lattice, and used group—theoretic ideas to determine the possible bifurcations from the



homogeneous state. The bifurcating solutions were then related to geometric patterns
commonly observed during hallucinations.

Of course, there are a number of other simplifications involved in a model of the
form (1.1). One is that the behavior of neurons can be characterized by their firing
rate alone, and more importantly, that a population of both excitatory and inibitory
neurons can be represented by a single population with a connectivity function that
takes both positive and negative values. Ermentrout [11] showed that, provided the
inhibition acts “quickly”, this can be done. A more realistic approach would involve
two variables, representing the activities of the excitatory and inhibitory populations,
and coupling functions between and within the populations that were non-negative.
Our model is less realistic in the sense that we only use one population, lumping the
excitatory and inhibitory neurons together, but has the advantage of involving only
one variable.

Note that we are not addressing the processes involved in the formation of the con-
nectivities represented by w(x), but are instead interested in the possible patterns of
neural activity that can exist in the system once these connectivities are in place.

2 The Model

In this section we review the techniques developed by Amari [1] to analyze the formation
of 1-bump solutions of (1.1) when the coupling is the simple lateral inhibition type.
First, in [1,18] it is assumed that the coupling function w(x) satisfies the following:

(x) is symmetric, i.e. w(—z) = w(zx) for all z € R;
(z) > 0 on an interval (—z, ), and w(—z) = w(z) = 0;

< 0 on (—oo,—z) U (z, 00).
is continuous on R, and [ w(y) dy is finite.

) w
) w
3) w(x) is decreasing on (0, z];
) w
) w

Coupling functions satisfying (Hs) and (Hy) are representative of “lateral inhibition” [11].
That is, condition (Hy) means that nearby neural elements excite one another, however
(Hy) results in an “inhibitory effect” if the distance between neural elements is greater
than a certain value, z. Conditions (H,), (H3) and (Hs) are general requirements which
allow for a tractable mathematical analysis of (1.1). In order to rigorously determine
the shape of steady—state solutions of (1.1), we also assume

(Hg) w(x) has a unique minimum on R at a point zy > Z, and w(x) is strictly increasing

on (x, 00).



An example of a connection function which satisfies conditions (H;) — (Hg) is

w(z) = Ke Mol — pre-miel, (2.1)

where K > M > 0 and k& > m > 0. A specific example of this “Mexican hat” type
function is shown in Figure A.1 for K = 3.5, M = 3, k = 1.8 and m = 1.52. For
simplicity, Amari [1] assumes that the firing rate f(u) is the Heaviside step function

0, u<0
flu) = (2.2)

1, u>0

The interpretation of (2.2) is that a neuron fires at its maximum rate when the input
exceeds the threshold value u = 0, and does not fire otherwise.

Under assumptions (H;)—(H5), Amari analyzes the existence and stability of stationary
solutions of (1.1) when there is no inhomogeneous external stimulus, s(x,t). That is, he
sets Qu(z,t)/0t = 0 and s(z,t) = 0 in (1.1). This reduces (1.1) to the time independent
equation

o

u@) = [ wlo=y)f(uly)dy+h. (2.3

—0o0

Solutions of (2.3) are called stationary solutions of (1.1). We note that the neural
system is still subject to the constant external stimulus h applied uniformly to the
entire neural field. It is easily verified that if A < 0 then the constant function v = h
is a solution of (2.3).

Single-bump solutions: For a given distribution u(x), Amari defines its region of
excitation to be the set

R(u) = {x|u(x) > 0}. (2.4)

He then defines a localized ezcitation to be a pattern u(x) whose region of excitation
is a finite, open interval, i.e. R(u) = (aj,as), where both a; and ay are finite. If
R(u) is connected we refer to the pattern as a “single-bump”, or “1-bump” solution.
Furthermore, because (2.3) is homogeneous, it is easily verified that u(z—a) is a solution
for any a whenever u(x) is a solution. Thus, without loss of generality, we assume that



the region of excitation for a single-bump solution has the form

R(u) = (0, a). (2.5)

Remark: If (2.3) has a solution whose region of excitation consists of N > 1 disjoint,
finite, connected, open intervals, the solution is called an N-bump solution. In the next
section we begin an analysis of 2-bump solutions.

In his analysis of 1-bump solutions, Amari makes use of the function

x

W(z) = /w(y) dy, (2.6)

and the related quantities

Wy, = max Wi(z) and Wy = lim W(z). (2.7)

T—r0Q

Conditions (H;) and (Hj) imply that W (z) is odd, and that W is finite, respectively.
If (2.3) has a 1-bump solution u(x) whose region of excitation is given by R(u) = (0, a),
then wu(z) satisfies

a

u(x) :/w(a:—y) dy+h=W(x)—W(x—a)+h. (2.8)

At the point x = a, equation (2.8) reduces to

Wi(a) =—h (2.9)
since W (z) is odd and u(0) = u(a) = 0. In turn, Amari claims that if a > 0 and h < 0
satisfy (2.9), then

u(z) =W(x) — W(x —a)+ h. (2.10)
is a single-bump solution of (2.3) for which R(u) = (0, a).

For a given h < 0, equation (2.9) may have zero, one or two positive solutions. The
exact number is determined by the relative values of W, W,,, and h. In Figure A.2 we
show the W (x) corresponding to the Mexican hat function illustrated in Figure A.1.



In Figure A.2 we see that if W, < 0 < —h < W, then there are two values, a; and
az, which satisfy (2.9). Setting a = a; and a = ay in (2.10) gives the corresponding
single-bump solutions of (2.3). In Figure A.3 we illustrate these two solutions for the
value h = —0.07. Amari gives arguments that indicate that the large amplitude solution
corresponding to a = ay (i.e. the leftmost solution in Figure A.3) is stable, while the
rightmost, smaller amplitude solution in Figure 3 corresponding to a = a, is unstable.
Furthermore, as Figure A.2 indicates, if h = 0 then (2.9) holds only at the positive
value a = ay = a,. Setting a = a, and h = 0 in (2.10), one can easily show that the
resulting function is still a single-bump solution of (2.3).

We note that if (2.9) has a solution for some a > 0 and h > 0 then (2.10) implies that
u(z) > 0 for all large x, contradicting the supposition that R(u) = (0, a) is finite. Thus,
single-bump solutions do not exist if h > 0.

Next, we make a few observations concerning the shape of single-bump solutions (see
Figure A.3). First, we conclude from hypotheses (H;) — (H4) and (2.10) that u(z)
is symmetric with respect to © = a/2, and that u(z) is increasing on (0,a/2) and
decreasing on (a/2,a). When we consider the additional hypotheses (Hs) and (Hg), it
follows from standard analysis that the solution u(x) has a unique minimum on (0, c0),
and that u(xz) — h from below as z — oc.

3 Two—bump solutions

In this section we begin our investigation of 2—bump solutions of the equation

o0

u@) = [ w(e = y)fu(y) dy+h. (3.1)

—0o0

Here w denotes a general coupling function, and the firing rate f(u) is the Heaviside
function defined in (2.2). A solution u(z) is called a 2-bump solution if there are values
0 <a<b<c<oosuch that

u>0 on (0,a)U(b,c),

u(0) = u(a) = u(b) = u(e) = 0, (3.2)

u < (0 otherwise.

Thus, a 2-bump solution is one whose region of excitation is the union of two disjoint,
finite, open intervals, i.e. R(u) = (0,a) U (b,¢). An “equal width” two—bump solution



is one for which ¢ — b = a.

In Theorem 3.1 we develop a constructive method to find equal width 2-bump solutions
of (3.1) for a general class of coupling functions. Following this, in Theorems 3.2 and 3.3
we consider lateral inhibition type couplings and derive fairly sharp estimates for the
location of the positive zeros a, b, and ¢ of 2-bump solutions. This will be of aid in
analyzing the shape of solutions. We then apply the results of Theorems 3.1-3.3 to
obtain detailed properties of families of 2—bump solutions for a specific example.

In order to proceed with the development of a necessary condition for two-bump so-
lutions to exist, we need to make one further technical assumption on the coupling
function w(x).

(H7) There is a value 2° > 1z such that w(z) is concave down for all z > 2°.
Theorem 3.1 Suppose that hypotheses (H,), (Hy), (Hs3), (Hs) and (Hz7) hold.

(¢) If (3.1)-(3.2) has an equal width solution for some 0 < a < b < ¢ < 00, then

OW () + W (a—b) — W(a+b) =0, (3.3)

and

h=W(b) —W(a) — W(a+b). (3.4)

(i1) There is an interval (0,a*) such that for each a € (0,a*) there are values b > a
and h € R for which (3.3) and (3.4) are satisfied.

The proof of this Theorem is in the Appendix.

Remarks: Theorem 3.1 gives a necessary condition which “equal width” 2-bump so-
lutions must satisfy. However, it does not guarantee that solutions which satisfy (3.3)
are actually 2-bump solutions of the full integral equation, (3.1). For this, assuming
that condition (3.3) holds, we must first show that the value of h given in (3.4) is
nonpositive. From (3.1) and (3.2) it follows that

lim u(x) = h. (3.5)

r—+o0

If it were the case that h > 0, then (3.5) implies that u(x) eventually becomes positive
and remains positive for all large x. But this violates the requirement given in (3.2)
that the region of excitation is finite. Finally, if ~ < 0 and (3.3) holds, then one must
also show that the function



a C

u(x):/w(:r—y)dy+/w(x—y)dy+h

:?/V(x) —W(@—a)+W(@x—-0)—W(x—-c)+h (3.6)

satisfies the conditions defined in (3.2).

Note that by using (3.6) and the oddness of W, it is easy to show that equal width
2-bump solutions are symmetric with respect to z = (a + b)/2.

Lateral Inhibition Couplings. We now turn our attention to the qualitative analysis
of 2-bump solutions when the coupling function w is specifically of lateral inhibition
type and satisfies all seven hypotheses (Hy) — (H7).

In [18] we proved the following result which gives a sharp upper bound on the width
between bumps:

Theorem 3.2 Under hypotheses (Hy,) — (Hs), if there is an h < 0 for which (5.1)
has an equal width 2-bump solution satisfying (3.2), then the distance between bumps
satisfies b — a < xy.

Note that if w had finite support (violating (H4) and (Hg)), this theorem would not
hold, as bumps sufficiently far apart would not interact and thus the pair of them would

be stable (assuming that a single bump was stable).

Additional estimates for the location of the zeros of 2-bump solutions are given in the
next result.

Theorem 3.3 If (3.1) has an equal width 2-bump solution satisfying (3.2) for some
0<a<b<c<oo, then

b>z and b—a<mzy<c=b+a, (3.7)

Proof: We assume that an equal width 2-bump solution exists. That is, there are
values a, b and h which satisfy equations (3.3) and (3.4), and ¢ = b+ a. Since W is
odd, equation (3.3) can be written in the form

W) — W(b—a) = W(b+a) — W), (3.8)

or equivalently,

10



w(z) dr = /w(x) dx. (3.9)

If 0 < b < & then our hypotheses imply that that w(z) > w(b) > 0 for b —a < z < b,
and w(z) < w(b) for b < = < b+ a. From this it follows that

/b w(x) dr > 7aw(:r) de, (3.10)

which contradicts (3.9). Thus it must be the case that b > z. Finally, suppose that
b+ a < . Then w decreases on the entire interval (0,0 + a) and we again obtain the
inequality in (3.10), contradicting (3.9). Therefore it must be the case that b+ a > x
and (incorporating the result of Theorem 3.2) the proof is complete.

An Example. In Figure A.4 we show “equal width” 2-bump solutions of (3.1) for the
specific lateral inhibition coupling defined in (2.1). The parameters used in Figures A.4
and A5 are K = 3.5, k=18, M = 3 and m = 1.52. For the leftmost solution in
Figure A4 we have a = 1, b = 1.419, ¢ = 2.419 and h = —0.028, whereas for the
solution on the right the corresponding values are a = 0.08, b = 1.156, ¢ = 1.236 and
h = —0.028. Thus, for h = —0.028 there are two two-bump solutions of (3.1). These
are comparable in size to the two single-bump solutions computed in Figure A.3. We
note that, in accordance with Theorem 3.2, both solutions satisfy b —a < zy = 1.15
where z; is the value at which w(x) attains its global minimum (see Figure A.1).

In Figure A.5 we let @ increase from a = 0 and compute the bifurcation diagrams in
the (a,b) plane and the (a,h) plane, for the entire family of two-bump solutions for
the functions w(z) and f(u) defined in (2.1)-(2.2). Our experiments show that as a
increases from a = 0, the function h(a) is continuous in a and decreases from h = 0
to a minimum value h = h, < 0, then increases until h = 0 at a ~ 1.39. Thus, for
each h € (h,,0), there are two two—bump solutions. For 1.39 < a < 2.83, we can still
find values b and ¢ such that condition (3.3) is satisfied. However, the corresponding
values of h defined in (3.4) are positive, so the resultant formulae for u(z) given in
(A.2) cannot be two—bump solutions of (3.1).

4 Stability of two-bump solutions

In this section we develop a general method to determine the stability of equal width
stationary two—bump solutions. We then use the resultant stability criterion to inves-
tigate the stability of 2-bump solutions when the coupling is of lateral inhibition type.

11



We assume that hypotheses (H,), (H2), (Hs), (H5) and (H7) hold so that the existence
criteria given in Theorem 3.1 are satisfied.

We assume that u(z,t) is a 2-bump solution of the time dependent equation

o0

=—u(e.t) + [ wle—y)f(u(y. 1) dy+h (+1)

—0o0

Ju(x,t)
ot

and that (x(t), z2(t)) and (x3(t), x4(t)) are intervals, with z5(t) < z3(t), such that

u>0 on (x1,29) U (z3,24),
u(zy) = u(zy) = u(zs) = u(zyg) =0, (4.2)

u < (0 otherwise.

(21,29, x3 and x4 are analogous to 0,a,b and ¢ in Section 3, but are now assumed to
be functions of time.) Substitution of (4.2) into (4.1) when f is the Heaviside function
leads to

Ju(z,t)
ot

T2 T4
= —u(x,1) +/w(x—y)dy+/w(:r—y)dy+h
1 3
=—u(z,t)+ W(x —z1) — W(x — x9) + W(x — x3) — W(z — 24) + h(4.3)
Equation (4.3) will play an important role in studying the motion of the points x4 (%),..,24(%).

To study their dynamics we use the same approach as Amari [1]. We differentiate
u(x;(t),t) with respect to ¢ for i = 1,2, 3,4 and obtain

d _ Oudz;  Ou

—u((t), 1) —0, i=1,2,3,4 (4.4)

s at "o

where both partial derivatives are evaluated at © = z;. The quantities Ou/0x|,, are the
spatial slopes of the solution profile at the endpoints of the intervals (x,(t),z2(t)) and
(w5(t), z4(t)). We assume that

0u/0x|y,, =c¢1 >0 and Ou/0x|,, = —c; <0, (4.5)

and

12



Ouf0x|y,, = —ca <0 and Ou/0z|,, = o > 0, (4.6)

where ¢; and ¢ may possibly be functions of x and ¢. The symmetry implicit in (4.5)
and (4.6) will be true for a stationary solution of (1.1) that is reflectionally-symmetric
about the point halfway between the two bumps (as was the case for the equal width
bumps constructed in Section 3), so (4.5) and (4.6) are reasonable approximations
if the initial profile u(z,0) is similar to that of the stationary solution. Substituting
(4.5)—(4.6) into (4.4), and using (4.3), we obtain

cl% =W(ry —x2) —W(xy —a3) + W(zy —24) — h (4.7)
CQ% =W(wy — 1) + W(xg —x3) — W(re —x4) + h (4.8)
02%:—W(x3 ) 4+ W (s — a0) + W (s — 4) — (4.9)
cl% =W(xg—a1) — W(xy —x0) + W(xg —23)+ h (4.10)

In keeping with the notation of the previous sections, we define

a(t) = x9(t) — x1(t), b(t) = x3(t) — 21 (t) and c(t) = x4(t) — 1(2), (4.11)

so that a(t) is the width of the first bump, b(t) — a(t) = x3(t) — x2(t) is the distance
between the bumps, and ¢(t) — b(t) = x4(t) — x3(t) is the width of the second bump.
Our goal is to determine the behavior of a(t),b(t) and ¢(t) as t — oc. Differentiating
these three functions and using (4.7)-(4.10), we obtain

=G+ )@=+ Wi - wo)

+ (}—Q[W(c —a)—W(b—a) (4.12)
@ = L [W(a)~ W)+ () + )

V= a) = W(B) ~ W(e—b) — 1) (113)
% _ Cl—lmv(c) LW (e—b) — W(e—a) + W(a) — W(b) + 21 (4.14)

Since we are considering “equal width” solutions, we write

c(t) = a(t) +b(t) Vvt > 0. (4.15)

13



Thus we are restricting the dynamics to the symmetric subspace in which the bumps
have equal width. Condition (4.15) simplifies (4.12)-(4.14), and we obtain

%: (é + é) W (@) + W (a+b) — W) +

+ é[2W(b) — W(a+b)+W(a—0)] (4.16)
%: Cl—l[W(a) C W) + W(a+b) + b

W= @) = W) - Wia)~ H (417

We define F' and G to be the right hand sides of (4.16) and (4.17), respectively. We
also assume that our two—bump stationary solution has the form given in (3.6) where
a =a,b=>0and ¢c = a+b, and a and b are stationary solutions of (4.16)-(4.17).
These constants must satisfy the necessary conditions given in (3.3) and (3.4). Next,
we linearize (4.16)-(4.17) around the solution (a,b) = (@, b). Thus, we replace ¢; and
¢y in (4.16)-(4.17) with the corresponding values obtained from the two—bump solution
itself, and compute the Jacobian matrix J of the resultant system at (@, b) :

o Fa Fb
J= (Ga Gb) , (4.18)

where F,, Fy, G, and G are partial derivatives evaluated at (@, b), and are given by

Fo= (o 2 ) (@ + w@a+ )+ - fwla - ) - wa+b) (4.19)

o= (5 + o) w@+h) - w®)] + 2o - wla+d) - wla-b)  (420)

Gu= 1w (@) + w(a+8)] - ~[w(-a) + v () (4.21)

Gr=[uwl@+5) ~ w®)] + - [w( - @) - w() (4.22)
The eigenvalues, \, of J satisfy

N — (F,+ G\ + F,Gy — F,G, = 0. (4.23)

If both eigenvalues have negative real parts then (a,b) = (@, b) is a stable solution with
respect to perturbations within the symmetric subspace. If at least one eigenvalue has
positive real part then (a,b) is unstable.
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Lateral Inhibition Couplings. We now investigate the stability of the equal width
two—bump solutions computed in Section 3 for the specific coupling function given in
(2.1).

To determine the stability of these solutions, we compute the signs of the trace and
determinant of the Jacobian matrix. From (4.19)—(4.22) we find that the trace is

Fyt Gy = (l + l) fw(a) — w(p)] + 228t | Zwle=b) (4.24)

1 Co 1 Co

and the determinant is given by

FuGy — FyG— %[w(a) — w(b)][w(a+b) + wb— a)

+ %[w(a +Dw(b— a) — w(b)w(a)], (4.25)

where we have dropped the bars from @ and b.

First, we consider the “small” two-bump solutions (see Figure A.4, right). These cor-
respond to solutions with small a along the bifurcation curves given in Figure A.5. We
conclude from (3.7) in Theorem 3.3 that

b—x9 as a— 07" (4.26)

along the bifurcation curve. Therefore, from (4.24) and (4.26) it follows that

1 1

F,+ Gy — <— + —> (w(0) + w(zg)) as a — 0. (4.27)
C1 Cy

Recall from hypotheses (H;) — (H7) that w(x) is positive and symmetric, and decreases

to a unique negative minimum on the interval (0, z¢). Furthermore, for the parameter

values we are considering it is the case (see Figure A.1) that

w(0) > —w(xg). (4.28)

This inequality, (4.27) and continuity imply that F, + G, > 0 along the bifurcation
diagram when a > 0 is small. Since the trace of the Jacobian is the sum of the eigen-
values, it must be the case that at least one eigenvalue has positive real part when
a > 0 is small, and therefore the corresponding two—bump solutions are unstable. Our
computations, shown in Figure A.6, indicate that F, + G, is actually negative for some
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range of a values, but for these values the determinant of the Jacobian is also negative,
so that at least one eigenvalue is positive, and thus all of the 2-bump (equal-width)
solutions are unstable for this example. Note that since these solutions are unstable
with respect to perturbations that preserve the equal-width condition, they will be
unstable with respect to general perturbations.

We have computed the trace and determinant as functions of a for over 1200 randomly
chosen values for K, k, M and m which give lateral inhibition type coupling, and in
each case we found that all 2-bump solutions are unstable. In a similar way, we studied
the stability of 2-bump solutions when the lateral inhibition coupling consists of the
difference of two Gaussians, namely

w(z) = Ke™™ — Me™". (4.29)

For more than 1200 randomly chosen combinations of the parameters K, k, M and m,
we also found that all 2-bump solutions were unstable. These results strongly suggest
that when the coupling is of lateral inhibition type, 2-bump solutions may exist, but
they are unstable. We note, however, that a rigorous proof of instability, as well as the
resolution of the general case, remain open problems. It would also be interesting to
resolve the following problems:

(¢) Determine stability properties of 2-bump solutions when the restriction given in (4.28)
is removed.

(77) Do the same when the firing rate function f is continuous rather than the Heaviside
function. Recent results [9] suggest that doing this may allow the existence of stable
2-bump solutions when the coupling function is a difference of Gaussians, although
the results in [9] are only numerical.

(171) Extend the results of Theorem 3.2 to apply to general N—bump solutions for both

finite and infinite domains.

(iv) For the interval (—o0,00), or for a given finite interval (—d, d), extend the results

of Sections 3 and 4 and find the maximum N > 1 for which stationary N-bump

solutions exist. Extend the stability analysis developed above and develop criteria

for both stability and instability of N—bump solutions for any N > 1.

5 A natural extension of lateral inhibition coupling

In this section we show that the multiplicity and stability of 2-bump solutions of

o

uw) = [ wlz = y)fluly) dy+ (5.1)

— 00
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can change when the hypotheses on w are relaxed. For simplicity we still assume that
f(u) is the Heaviside function, and that the basic hypotheses (H;), (H5) and (H7) hold.
Thus, w is continuous, symmetric and integrable on R, and concave down for large x.
However, we no longer require w to have only one positive zero. Instead, we replace
(Hs), (Hs), (Hy) and (Hg) with the following two hypotheses (see Figure A.7):

(Hg) w(0) > 0, and w has exactly three positive zeros at values 0 < s < s9 < s3.
(Hg) W(Sg) > W(Sg) — W(OO) > 0.

Remarks: Since W (z) = [y w(t)dt, it follows that (Hy) can be written as

o0

ﬁMﬂﬁ>—wM0ﬁ— w(t) dt. (5.2)
ot [uva- ]

0 53

This can be interpreted to say that the area under the curve w(x) over (0, s;) is larger
than the sum of areas between w(z) and the x—axis over (sq,s2) U (s3,00) (see Fig-
ure A.7). We will use inequality (5.2) to determine the sign of h in equation (5.1).

Before stating our main results we recall from Theorem 3.1 that the zeros a, b, and ¢ of
an equal width 2-bump solution of (5.1) satisfy ¢ = a+b, as well as the condition (3.3).
The corresponding value of h is given by (3.4).

In Theorem 5.1 we keep a fixed and investigate the multiplicity and stability of 2-bump
solutions when 0 is allowed to vary. In particular, we derive a simple criterion which
guarantees that equation (3.3) has at least three solutions, one of which satisfies the
criteria for stability given in Section 4. In Theorem 5.2 we show that a general class of
coupling functions exists which satisfy the requirements of Theorem 5.1. After proving
this result we consider a specific example and illustrate the global behaviour, including
multiplicity and stability, of families of 2—bump solutions.

Theorem 5.1 Assume that hypotheses (Hy), (Hs), (Hz), (Hs) and (Hy) hold. Suppose
that ay > 0 and by > ay exist such that (3.3) is satisfied when (a,b) = (a1, by), and that

oW (a1) — W (2a1) > 0 (5.3)

and
s1<a; < So<b<s3<ci=a;+b and s; < b —a; < sy. (54)
(1) Then there are two additional values of b, denoted by by and bz, with
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a; < by < by < b, (5.5)
such that if (a,b) = (a1, be) or (a,b) = (a1, bs) then equation (3.3) is satisfied.
(17) For each i € {1,2,3}, if (a,b) = (a1,b;) and h; is defined by (3.4), then h; < 0.
(134) If (a,b) = (a1, by) then the conditions for stability of the solution are satisfied.
The proof of this Theorem is in the Appendix.

Remarks: In Theorem 5.2 we will show that there does exist a class of coupling
functions which satisfy the requirements of Theorem 5.1. Although we construct a
specific coupling function, it will be obvious that generalizations to a wider class of
couplings can immediately be made.

First, we specify the values a, b; and ¢; by setting

a; = (51 + 52)/2, b1 == 2&1 and cr =a1 + b1 == 3&1, (56)

and define the four associated “areas” (see Figure A.8)

S92 2a1 S3 3a1
A = —/w(t) dt, Ay = /w(t) dt, Ay = /w(t) dt, Ay = — / w(t)dt. — (5.7)
a1 S2 2a1 53

Note that Aq,..., A4 are all positive.

To show that ay,b; and ¢; satisfy conditions (5.3) and (5.4) we make two further
assumptions on the coupling function, w(z):

(Hip) 0 < s1 < s3—sy and s3 < 3(s1+ s9)/2.
(Hll) Al == AQ and Ag == A4.

Hypothesis (Hyg) gives reasonable lower and upper bounds on the positions of si, sy
and s3, and on the “width” of the region between s, and s3 (see Figure A.8). Hypoth-
esis (Hi;) gives a relationship between the four areas A;, Ay, A3 and A4. In the proof
of Theorem 5.2 this relationship will play an important role in showing that condi-
tions (3.3), (5.3) and (5.4) are satisfied. For fixed ay, sy and s3, it can be seen that an
initially chosen w(x) can be “tweaked” by adding appropriately chosen sufficiently dif-
ferentiable functions with finite support to w(x), so as to ensure that (Hj;) is satisfied,
without violating any of the other necessary hypotheses.

Theorem 5.2 Assume that (H,), (Hs) and (H7) — (Hy1) hold, and that ay, by, and ¢,
are given by (5.6). Then (3.3), (5.3) and (5.4) are satisfied when (a,b) = (ay,by).
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The proof of this Theorem is in the Appendix.

Remarks. In Theorem 5.1 we have derived necessary conditions for the coexistence
of several 2-bump solutions. In particular, our criteria guarantee the coexistence of
at least three solutions of (3.3), one of which satisfies the conditions for stability. In
Theorem 5.2 we constructed a class of couplings for which the criteria in Theorem 5.1
are satisfied.

An Example. We now investigate a particular example of a coupling function w(z)
for which there are branches of 2-bump solutions as described above in Theorems 5.1
and 5.2. Here we restrict our attention to the one—dimensional problem. In the next
section the two—dimensional case will be addressed.

In one space dimension our example consists of the equation

aug, B _ —u(z, 1) +/ w(z — y) f(uly, t))dy + h, (5.8)

where f(u) = H(u) (i.e. the Heaviside function), and the coupling w has the form

w(z) = 2e M1 — dya? + dyat — dga®). (5.9)

The specific parameters are given by

= 1
1200 (5.10)

Note that w(z) is even and has exactly 3 positive zeros (see Figure A.9). Furthermore,
hypotheses (H), (Hs), (Hs), (Hs), (H7), (Hg) and (Hg) are all satisfied for this function.
In Figure A.9 (right) we show a blowup of the coupling function shown in Figure A.9
(left). This shows the positions of the points s; where w = 0, and also the points ;
where w' = 0. This diagram will help illustrate the connections between our example
and the existence and stability results given in Theorems 5.1 and 5.2.

1-Bump Solutions. Recall from Section 2 that the 1-bump solution given by (2.8)
exists and is stable for values of a such that W(a) > 0 and W'(a) < 0. For lateral
inhibition type couplings (i.e. w(z) has one positive zero) there is exactly one interval
of positive a values such that W(a) > 0 and W'(a) < 0 (see Figure A.2). Figure A.10
illustrates W (a) for our example where the coupling is defined by (5.9)-(5.10) (Note
that we have plotted h = —W (a)). We see that there are now two intervals of positive
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a values (indicated by + signs on the curve) where W(a) > 0 and W'(a) < 0. In the
general case there will always be at least two such intervals when the coupling function
w has three or more positive zeros. We see that if —0.95 < h < —0.8 then four 1-bump
solutions coexist, two of which are stable and two of which are unstable. Figures A.11
and A.12 shows four such solutions for h = —0.85.

2-Bump Soutions. In Section 3 it was shown that the region of excitation for an
equal-width 2-bump stationary solution has the form R(u) = (0,a) U (b, a + b), where
0<a<hb.

It was also shown that a and b must satisfy (3.3) and that the corresponding value of
h is given by (3.4).

We have found that for the coupling function used, for each a > 0 there are three
values of b which solve (3.3). These are shown in Figure A.13. The three branches of
solutions are labeled Sy, S, and S3. Along each branch we determined the stability of
the corresponding solution by applying the criterion developed in Section 4. We find
that all solutions along S; and S3 are unstable. However, on Sy there are two intervals
of a values (indicated by + signs in Figure A.13) where the 2-bump solutions are stable
with respect to perturbations that do not break the equal-width condition.

Furthermore, along each S; we see that b(a) — f3; as a — 07, where 3; denotes the ith
positive zero of w'(z) (see Figure A.9 (right)). The estimates given in Theorem 3.3 in
Section 3 show that this same phenomenon occurs for lateral inhibition couplings (see
Figures A.4 and A.5). For general couplings having N > 3 positive zeros, we conjecture
that a similar phenomenon will occur leading to /N distinct families of 2-bump solutions,
and possibly to other families of multi-bump solutions as well.

To show that the hypotheses of Theorem 5.1 are satisfied for a particular solution from
Figure A.13, we show in Figure A.14 the stable 2-bump solution corresponding to the
point (a,b) = (2.95,5.56) € Sy. The zeros of this solution (shown with a solid curve)
interlace with the zeros of the coupling function w(z) (dashed curve) in the correct
way (inequalities (5.4)). The full graph of this solution is given in Figure A.17 (right
panel). It can be shown that 2W (a) — W (2a) > 0 for the w(z) given in (5.9)-(5.10)
and all a values of interest, and thus the hypotheses of Theorem 5.1 are satisfied.

Next, we compare our results for 2-bump solutions with those shown in Figure A.10
for 1-bump solutions. We compute h(a) (using (3.3) and (3.4)) along each of the curves
S1,52 and S3 in Figure A.13 — this is shown in Figure A.15, where the curves have
been labeled I'y,T'y and '3, corresponding to S;, 59 and Sj, respectively. We see that
h < 0 for all relevant values of a, for all three curves. Recall that along I'; and I'; the
solutions are unstable. However, along I'y, the curve corresponding to Sy, there are two
intervals where 2-bump solutions are stable.
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To compare our 1-bump and 2-bump results, we have graphed in Figure A.16 both
[y and Ty, the curve in Figure A.10 representing 1-bump solutions. We find that if
—0.875 < h < —0.8 then four 1-bumps solutions (two stable and two unstable), and
four 2-bump solutions (two stable and two unstable) coexist. For the particular choice
h = —0.85, these eight solutions are graphed in Figures A.11, A.12, A.17 and A.18.

While we have only considered that stability of fixed points of (4.16)-(4.17), thus only
taking into account perturbations that preserve the “equal bump width” condition,
by directly integrating the three ODEs (4.12)-(4.14) it was found that stable fixed
points of (4.16)-(4.17) can also be stable fixed points of (4.12)-(4.14) (not shown). The
equations (4.12)-(4.14) do not assume that the bumps have equal width, so stable fixed
points of these equations are stable to arbitrary perturbations. Proving the stability of
fixed points of (4.12)-(4.14) remains a challenge for the future.

6 Extension to two space dimensions

In this section we extend our model to two spatial dimensions. This is more realistic
for situations in which the position of a bump in a two-dimensional domain is of
interest, e.g. if it encodes the position of an image on the retina (see, for example,
Fig. 5 in [23]). Also, the cortex is an essentially two—dimensional sheet. The system we
study, in analogy with (2.1)-(2.3), is the following:

ou(z,y,1)

—a = —u(z,y,t) + /{[w(x —q,y — s)f(u(g,s,t)) dgds + h, (6.1)

where € is an open connected subset of R?, f(u) is the Heaviside function, and w(z, y) is
the coupling function. Again, we have assumed that there is no external inhomogeneous
term. We will consider two particular couplings. The first is a generalization of lateral
inhibition type couplings from Section 2, and the second is the generalization of the
coupling with three positive zeros studied in the previous section. For each example
we will compute both 1-bump and 2-bump solutions for appropriate chosen parameter
values which will allow comparisons with our results for one spatial dimension.

In Figures A.19 and A.20 we have computed stable one-bump and two—bump solutions
of (6.1) for the function

w(z,y) = Ke FVTHY _ pfemmV@*+y? (6.2)
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The coupling function in (6.2) is the two-dimensional version of the “mexican hat”
coupling given in (2.1), with distance in one dimension now replaced by distance in
two dimensions. The domain €2 is a square of side-length 10, discretized by a regular
50 x 50 grid, with open boundaries. For both solutions the initial input for u(z,y,0)
is random but localized. It remains an open problem to give a proof of existence and
stability of the solutions shown in Figure A.19 and A.20.

Next, we compute 1-bump and 2-bump solutions for the coupling

w(,y) = 27V —dy (o + yP) + do(2® + yP)? — da(a? + 7)), (6.3)

The specific parameters are given by
kzl,dlz— d2:—,d3:—. (64)

This problem is the two—dimensional analogue of (5.9)-(5.10), i.e. of the model in
which the coupling function has three positive zeros in one dimension, considered in
the previous section.

In Figures A.21 to A.24 we show two stable 1-bump solutions, and two stable 2-bump
solutions. For each of these we keep h = —0.85 which allows for comparisons with the
analogous one-dimensional solutions shown in Figures A.11, A.12, A.17 and A.18 in
the previous section. The domain was discretized with an 85 by 85 grid.

These solutions are only stable in the sense that numerical integration of the governing
equations, (6.1), converges to them. (Numerical methods are described in Ref. [18].)
Proof of the existence of such solutions, and in particular, the determination of their
stability, remain open problems.

7 Summary

In this paper we have studied steady states of a partial integro—differential equation
that has been used to model working memory in a neuronal network. Our main goal
throughout the paper has been to determine the types of coupling functions for which
stable 2-bump solutions exist. It is hoped that by focusing on properties of 2-bump
solutions we will obtain new insights which apply to the study of N-bump solutions
for any N > 1.
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The first part of our investigation has led to the following results in one spatial dimen-
sion:

(1) the development of a general formula describing equal width 2-bump solutions;
(77) the development of a criterion for the stability of equal width 2-bump solutions.

We applied these criteria to a wide class of randomly chosen models for which the
coupling function is of lateral inhibition type and the firing rate is a step function. We
found that 2-bumps solutions may exist, but if they do, they are unstable. Thus, when
the firing rate is a step function, we conjecture that no stable 2—bump solutions exist
for lateral inhibition type coupling.

In the second part of the paper we relax our hypotheses and investigate the class of
couplings which have three positive zeros. Here we have the following results:

(7ii) the development of a criterion for the existence of three families of 2-bump solutions;

(1v) the development of a criterion that guarantees the stability of a 2-bump solution
when the zeros of the solution interlace with the zeros of the coupling function in an
appropriate fashion.

We constructed a general class of couplings which have three positive zeros and which
satisfy the criteria in (i7i) — (iv). We completely analyzed a typical example and found
a range of h values in which two stable 1-bump solutions and two stable 2-bump
solutions coexist. We then extended our example to include two spatial dimensions.
Here we again find the coexistence of at least two stable 1-bump solutions and at least
two stable 2-bump solutions. This implies that in order to obtain patterns that are
more complex than a single isolated bump, a coupling function with more than one
positive zero is necessary.

The possibility of the system (1.1) having more than one attractor for fixed parameter
values is of interest. It would be interesting to investigate the relative sizes of the
domains of attraction for the coexisting solutions, and the robustness of the system to
external stimuli, e.g. noise. Competition between different attractors in a system of the
form (1.1) under dynamic input has been suggested as a model for visual attention [28],
and the coexistence of two attractors in a similar system has been used to model various
aspects of visual perception [12]. Although we do not have an obvious interpretation
for the 2—bump solutions we have investigated here, we feel that these results may be
relevant in determining which possible patterns can occur in neural models that more
realistically take into account the complex couplings between neurons.

There are several ways to extend the results obtained in this paper. In one spatial

dimension it would be interesting to study coupling functions which have more than
three positive zeros. For example, if w has five positive zeros then w’ has at least five
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positive zeros, (1, .., B5, and for each 7+ we conjecture that a family of 2—bump solutions
arises through a bifurcation from the point (a, h, b) = (0,0, ;). This would lead to five
branches of solutions similar to the three shown in Figure A.13. It should be possible to
extend the methods developed here to determine the stability of solutions along these
new branches. For the general case, extensions of our methods should also give new
results concerning the existence, multiplicity and stability of N—bumps solutions for any
N > 1. It would be interesting to relate results of this form to the results in Ref. [18],
where families of N-bumps were investigated, although a smooth firing function f was
used in that paper. Other recent relevant work is that of Coombes et al. [9] in which
w retains a mexican—hat structure (i.e. lateral inhibition), but now the assumption on
firing rate is relaxed and is taken to be a sigmoidal function. For a particular example
they give numerical evidence that there exists a range of h over which pairs of N-bump
solutions exist for every N > 1. For each such pair they conjecture that the one with
the larger L? norm is stable. It is interesting to note that their assumptions give at
most one stable N-bump solution for any N > 1, whereas our approach of modifying
the coupling function results in the coexistence of two stable 1-bump solutions and two
stable 2—bump solutions. A more general extension could involve combining the ideas
of Bressloff [4] regarding pattern formation on inhomogeneous domains with the type
of coupling function introduced here; or using one population of excitatory neurons and
one of inhibitory neurons, together with appropriate non—negative coupling weights, to
see if the results found here could be reproduced.

In two spatial dimensions there are very few rigorous results, although some progress
has been made on circularly-symmetric solutions [27,30]. It remains a challenge to
develop methods that lead to the types of non—circularly—symmetric solutions we have
found, as these are at least as interesting from a biological point of view as solutions
in one spatial dimension.

A Proofs

We now state some of the Theorem proofs omitted from the main text.

A.1  Proof of Theorem 3.1

We assume that there is an A € R such that (3.1) has a solution satisfying (3.2).
From (2.2), (3.1) and (3.2) it follows that u(x) can be written as
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a C

u(x) :/w(:r—y)dy+/w(x—y)dy+h Vz € R. (A1)

0

Hypotheses (H;) and (H;) imply that W (x) is continuous and odd.

Using (2.6), we write (A.1) as

w(z) =W(x) = W(x—a)+W(x—->b) —W(x—c)+h. (A.2)

Because u(a) = u(b) = u(c) = W(0) = 0, it follows from (A.2) that

Wi(a)+W(a—-b)—W(a—c)+h=0 (A.3)

W) —W(H—a)—W(OH-c)+h=0 (A4)
and

Wi(c)—W(c—a)+W(—0b)+h=0. (A.5)

The system (A.3)-(A.5) consists of three equations in the four unknowns. Assuming
that the two bumps are of equal width, we set ¢ — b = a, and (A.4)-(A.5) become

W) —W(b—a) —W(—a)+h=0 (A.6)

and

Wi(a+0b) —W(b)+W(a)+h=0. (A.7)

(Using the oddness of W, we see that substituting ¢c—b = a into (A.3) gives an equation
equivalent to (A.6).) A subtraction of (A.7) from (A.6) leads to

QW (b) + W(a — b) — W(a+b) = 0. (A.8)
This establishes the necessary condition given in (3.3).

Next, we use (A.8) to prove part (ii). For this we find it convenient to set b = = + a
in (A.8) and investigate the resulting function

z(z) =2W(a+z)+ W(—z) — W(2a+z), = >0. (A.9)

25



Thus, for each @ in some open interval whose left endpoint is 0, we need to show that
there is a first z, > 0 such that z(z,) = 0. We will then set b = a + z, and ¢ = b+ a.
The first step is to set £ = 0 in (A.9) and investigate the resulting function

g(a) =2W(a) — W(2a), a>0. (A.10)
It follows from our hypotheses that g(a) is a C* function on [0, +00), and that

g'(a) = 2[w(a) — w(2a)]. (A.11)

It is clear that ¢g(0) = ¢’(0) = 0. Recall that w(0) > 0, and that w(x) decreases to zero
at © = Z. Thus, there is a value @ € (0,00) such that w(a) > w(2a) for 0 < a < a.
Therefore

g'(a) >0 and g(a) >0 for 0<a<a. (A.12)

From these properties it follows that there is a maximal a* € (0, c0) such that
g(a) =2W(a) — W(2a) >0 Va € (0,a"). (A.13)

We now keep a € (0,a*) fixed and return to the analysis of the function z(z) defined
in (A.9). From (A.9) and (A.13), and the fact that W is odd, we conclude that

2(0) =g(a) >0 and z(+oc) =0. (A.14)
Furthermore, (A.9) and our hypotheses imply that z(x) is continuous on [0, +00). Next,
we prove that z(z) is negative for large enough x. Because z(oco) = 0, it suffices to show
that 2/(z) > 0 for large . A differentiation of (A.9) gives

Z(z) =2w(a+2z) —w(x) —wa+2z), x>0. (A.15)

Rearranging terms, we obtain

2(x) = wla+z) — wx)] — [w2a+2) —w(a+x)], z>0. (A.16)

It immediately follows from (A.16) and hypothesis (H7) that 2/(z) > 0 and z(z) < 0
for sufficiently large > 0. From these properties and the continuity of z(z) it follows
that there is a first value z, > 0 such that z(z,) = 0. We then define b = a + z, and
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set ¢ = b+ a. Finally, if there is a 2-bump solution corresponding to these values of
a, b and c then it follows from the oddness of W and (A.2), and the requirement that
u(0) = 0, that the constant h in (A.1) satisfies (3.4). This completes the proof.

A.2  Proof of Theorem 5.1

Part (i). In a similar way to that done in Theorem 3.1 we analyze the functions

z2(x) =2W(ay + ) + W(—-z) — W(2a; + 2) (A.17)

and

2(z) = 2w(ay + z) — w(z) — w(2a; + ). (A.18)

From (5.3), (A.17) and (A.18) we obtain

2(0) = 2W (a)) — W (2a;) > 0. (A.19)

Thus, there is an interval (0, dy) such that

z(x) >0 V€ (0,d). (A.20)

Next, we have assumed that (3.3) is satisfied when (a,b) = (a1, b;). That is,

2W (by) + W (ay — b)) — W(ay + by) = 0. (A.21)

Also, from the requirements on a; and by given in (5.4) it follows (see Figure A.7) that

w(bl) > 0, w(bl — CL1) <0 and U)(Cll + bl) < 0. (A22)

We let 27 = by —ay in (A.17) and (A.18), and use (A.21) and (A.22) together with the
fact that w is an even function, to obtain

z(x1) =0 and 2'(z1) = 2w(by) — w(by — a1) — w(a; + by) > 0. (A.23)

Thus, there is an interval of the form (x; — d1, 21 + 1) such that
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z2(x) <0 Vo € (x1 —61,21), and z(z) >0 Va € (z1,27 — 01). (A.24)

We conclude from (A.20), (A.24) and the continuity of z(x), that there is a first o €
(0, 21) such that z(zy) = 0. Thus, when z = x4, equation (A.17) becomes

2W(CL1 + JIQ) + W(—JIQ) - W(2CL1 + JIQ) =0. (A25)

We define by = a; + 9 and write (A.25) as

2W(bz) + W(a1 — bg) — W(a1 + bg) =0. (A26)
Thus (3.3) is satisfied when (a,b) = (ay, ba).

Finally, we recall from the proof of Theorem 3.1 that z(z) is continuous on [0, c0), that
z(z) = 0 as x — oo, and z(z) < 0 for all large . From this and property (A.24) it
follows that there is a first x3 € (1, 00) such that z(xz3) = 0. That is,

2W (ay + x3) + W(—2z3) — W(2a; + z3) = 0. (A.27)

Setting by = a; + x3, we write (A.27) as

2W(b3) + W(a1 — b3) - W(a1 + bg) =0. (A28)
Thus (3.3) is satisfied when (a, b) = (a1, b3). This completes the proof of part (7).

Part (i¢). It follows from the definition of W (x) that (3.4) can be written as

al al+bi
he = —/w(t) dt — / w(t)dt, i=1,2,3. (A.29)
0 b;

To show that each h; is negative requires that we consider two possibilities for b;.
Case (I) b; > s9

Our hypotheses imply that (see Figure A.7)

ay

w(t) dt = Slw(t) dt + aw(t) dt > S2w(t) dt, (A.30)
[ [ronefron- |

0 0

since a; € (s1,s2) and w(z) < 0 on (sq, s2).
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Because b; > s, we also obtain

a7rbiw(t) dt > 7w(t) dt, (A.31)

since w > 0 on (s9,s3) and w < 0 on (s3,00). Substituting (A.30) and (A.31) into
(A.29), and invoking (Hy), we conclude that

hi < — ?w(t) dt — fw(t) dt = —W(sq) + Wi(s3) — W(o0) <0, (A.32)

as claimed.
Case (1) b; < s9

Here there are two subcases to consider. First, suppose that a; +b; < so. Then w(z) < 0
on (ay,a; + b;) and it follows that

alw(t) dt + a1+biw(t) dt > S2w(t) dt. (A.33)
[ros [ oo |

Combining (A.33) with (A.29), we obtain

hi = — (711)(15) dt + al]Lbiw(t) dt) <- ?w(t) dt. (A.34)

0 b;

Thus, from (A.34) and (Hy) we obtain

hi < — 7w(t) dt = =W (s3) < W (o) — W(s3). (A.35)

0

But W(oo) — W(s3) = [ w(t)dt < 0 since w(x) < 0 for z > s3. Thus h; < 0 when
a1 + b; < s9. It remains to consider the possibility that b; < sy < a; + b;. In this case
(A.29) becomes
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hi = — 71w(t) dt + ?w(t) dt | — al]Lbiw(t) dt. (A.36)

k2 82

Note that

7w(t) dt + ?w(t) dt > fw(t) dt (A.37)

0 0

since w < 0 on (b;, s2). Also,

a7rbiw(t) dt > 7w(t) dt (A.38)

52

since w > 0 on (s, s3) and w < 0 on (s3, 00). Substituting (A.37) and (A.38) into (A.36),
we once again obtain (A.32), hence h; < 0 as required.

Part (ii7). We recall from the stability analysis in Section 4 that the solution corre-
sponding to (a,b) = (ay,by) is stable if the trace and determinant of the associated
Jacobian matrix .J defined in (4.18) have the correct signs. The trace and determinant
are given by (4.24) and (4.25), respectively, where (a,b) = (aq, ;). It follows from (5.4)
and our hypotheses on w that

w(ar) <0< w(b), wby —a;) <0 and w(a; +by) <O0. (A.39)
Using the inequalities in (A.39), we conclude that the trace is negative and the determi-
nant is positive. From this it follows that both eigenvalues of the Jacobian matrix have

negative real parts and therefore the solution is stable with respect to perturbations
that do not break the equal-width condition. This completes the proof of the theorem.

A.3  Proof of Theorem 5.2
First, since a1, b; and ¢; are given by (5.6), then

ar = (s1+ 82)/2,bp = 2a1 = s1 + 89, ande; = by + a3 = 3(s1 + $2)/2. (A.40)

Furthermore, (H;o) implies that
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S1 < (81 + 52)/2 < 859 < 81+ 82 < s53< 3(81 + 52)/2. (A41)

Combining (A.40) and (A.41), we obtain (see Figure A.8)

s1 < (81 —+ 32)/2 =a; < S < S+ 8 =0b <s3< 3(81 + 32)/2 = (1, (A42)
and therefore the conditions in (5.4) are satisfied.
Next, we show that (3.3) holds. First, from (5.7) and (Hy;) we conclude that

2a1 S2 2a1

/w(t) dt = /w(t) dt + / w(t)dt = —A; + Ay = 0, (A.43)

ail ai

The definition of W (x) implies that (A.43) is equivalent to

W(2a;) — W(ay) = 0. (A.44)

Similarly, it follows that

3a1 $3 3a1
/w(t) dt = /w(t) dt + /w(t) dt = Ay — Ay =0, (A.45)
2a1 2a1 53

or equivalently,

Next, substitute (a,b) = (a1, by) into the expression on the left side of (3.3) and use
the fact that W is odd, together with (A.40), (A.44), and (A.46) to obtain

2W(b1) + W(a1 — bl) — W(a1 + bl) = 2W(26L1) — W(al) — W(3CL1) =0. (A47)
Thus, (A.47) shows that (3.3) is satisfied when (a, b) = (ay, by).

Finally, (A.42) shows that s; < a; < s, and our hypotheses imply that w > 0 on
(0,s1) and w < 0 on (s1, S9). From these facts and (Hg) we conclude that

W(a)) = /w(t) dt > /w(t) dt = W (ss) > 0. (A.48)

o
o
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From (A.44) and (A.48) it now follows that

2W(ay) — W(2a;) = W(ay) > 0, (A.49)

and therefore (5.3) is satisfied. This completes the proof.
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Fig. A.1. Mexican hat function (2.1) for parameters given in the text. The minimum for w
occurs at zg = 1.15.

Fig. A.2. W(x), (2.6), for the parameters in the text. We have chosen h to be negative, so
that W, <0< —h < W,,.
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Fig. A.3. Stable (left) and unstable (right) single-bump solutions of (2.3) for the functions w
and f shown in Figure A.1 and h = —0.07.

Fig. A.4. Two-bump solutions of (3.1) for a = 1 (left) and a = 0.08 (right). We have
h = —0.028 for both solutions.
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Fig. A.5. Left: b as a function of a from (3.3). Note that b — z¢ as a — 0, in accordance
with (3.7) in Theorem 3.3. See also the rightmost (small a) solution in Figure A.4. Right: A

as a function of a. If h, < h < 0 then there are two values of a for which (3.1) has two-bump
solutions.
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Fig. A.6. Left: trace (4.24) and determinant (4.25) as functions of a along the family of
2-bump solutions computed for the parameters K = 3.5, k = 1.8, M = 3, m = 1.52. Right:

Corresponding eigenvalues (both real) as functions of a. For each a the solution is unstable
since at least one eigenvalue is positive.
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Fig. A.7. Coupling function satisfying (H),(Hs),(H7),(Hs),(Hy). Also, a;, by and
¢1 = a1 + by satisfy condition (5.4) in Theorem 5.1.

0.4+

Fig. A.8. Coupling function satisfying hypotheses (Hi),(Hs) and (H7;) — (Hyp1), and
ay = (s1+ s2)/2,b1 = 2a; and ¢; = 3a; satisfy conditions (5.3) and (5.4).
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Fig. A.9. Left: The coupling function defined in (5.9) for parameter values given in (5.10).
Compare with Figure A.1. Right: A blowup of the coupling function shown at left. w = 0 at
s1=1.32, s9 =3.65, s3="7.18, and w' =0 at f; =2.11, B2 =4.9, and B3 = 9.32. .
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Fig. A.10. A plot of the function h = —W (a) for the coupling given by (5.9)-(5.10). Along
'y = {(a,h)|a > 0 and h = —W(a)} stable 1-bump solutions are indicated by plus signs.
The maxima and minima are given by s; = 1.32,s9 = 3.65 and s3 = 7.18. Compare with
Figure A.2.
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0.7 0.7

Fig. A.11. Unstable (left) and stable (right) 1-bump solutions of (5.8). The values of a are
a = 0.61 (left) and a = 2.73 (right). These solutions are comparable to the 1-bump solutions
shown in Figure A.3 for lateral inhibition couplings.

0.7 0.7

Fig. A.12. Unstable (left) and stable (right) 1-bump solutions of (5.8). The a values are
a = 4.89 (left) and a = 11.3 (right).
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Fig. A.13. Three branches S1,So and S3 of 2-bump solutions. Points on these curves sat-
isfy (3.3). Stable solutions are indicated by plus signs on Sg. Along each S; we find that
b(a) — B; as a — 0T, where w'(B;) = 0. Compare with Figure A.5.

Fig. A.14. Stable 2-bump solution (solid curve) of (5.8) for parameters given in (5.10). Here
a = 295 b = 556, c =a+b = 851 and h = —0.85. The dashed curve is the cou-
pling defined in (5.9). The conditions for stability given in Theorem 5.1 are satisfied since
a € (s1,52), b€ (s2,s3) and ¢ € (s3,00).
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-1.18 ¢

Fig. A.15. h as a function of a (using (3.3) and (3.4)) for 2-bump solutions. Each T'; corre-
sponds to an S; in Figure A.13. Compare with Figure A.5, right.

-0.6 1

—0.85 1

—-1.18 1

Fig. A.16. The curves I'y (of 1-bump solutions) and I'y (of 2-bump solutions) are shown in
the (a, h) plane. Stable solutions are indicated by plus signs. If —0.875 < h < —0.8 then two
stable 1-bump solutions and two stable 2-bump solutions coexist (along with two unstable
1-bump solutions and two unstable 2-bump solutions).
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-1.2

Fig. A.17. Unstable (left) and stable (right) 2-bump solutions of (5.8) for h = —0.85. The
values of a are a = 0.55 (left) and a = 2.95 (right). The parameters for the coupling are given
in (5.10). The shapes of these solutions are similar to the unstable 2-bump solutions found
earlier for lateral inhibition coupling, shown in Figure A.4.

Fig. A.18. Unstable (left) and stable (right) 2-bump solutions of (5.8) for h = —0.85. The a
values are a = 7.36 (left) and a = 10.63 (right).
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Fig. A.19. One-bump solution of (6.1)-(6.2). Parameters are K

—0.1.
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Fig. A.20. Two-bump solution of (6.1)-(6.2). Parameters are K = 3.5, k = 1.8, M = 2.8,
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1.52 and h = 0.

m =



Fig. A.21. A 1-bump solution for the coupling given in (6.3)-(6.4). Here h = —0.85. Compare
with the one—dimensional solution in Figure A.11, right panel.
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Fig. A.22. Second 1-bump solution for the coupling given in (6.3)-(6.4). Here h = —0.85.
Compare with the one-dimensional solution in Figure A.12, right panel.
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Fig. A.23. A 2-bump solution for the coupling given in (6.3)-(6.4). Here h = —0.85. Compare
with the one—dimensional solution in Figure A.17, right panel.

30 40

Fig. A.24. Second 2-bump solution for the coupling given in (6.3)-(6.4). Here h = —0.85.
Compare with the one-dimensional solution in Figure A.18, right panel.
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