Derivation of a neural field model from a network of theta neurons
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Neural field models are used to study macroscopic spatio-temporal patterns in the cortex. Their
derivation from networks of model neurons normally involves a number of assumptions, which may
not be correct. Here we present an exact derivation of a neural field model from an infinite network
of theta neurons, the canonical form of a Type I neuron. We demonstrate the existence of a “bump”
solution in both a discrete network of neurons and in the corresponding neural field model.

PACS numbers: 05.45.Xt, 87.19.11

Keywords: neural field, theta neuron, Ott/Antonsen

Large-scale coherent activity in the brain is associated
with a variety of behaviour such as an epileptic seizure or
remembering something in short term memory [1, 2]. A
number of “neural field” models have been proposed to
explain such activity, and these models have been stud-
ied intensively over a number of decades [3-10]. While
such models have been successful in helping to under-
stand phenomena as diverse as visual hallucinations [5],
binocular rivalry [6], and the head direction system [11],
a significant issue with neural field models is their rela-
tionship to — and derivation from — networks of indi-
vidual neurons. Neural field models normally take the
form of nonlocal partial differential equations in space
and time for a variable that is interpreted as “synaptic
drive” or the average voltage difference between the in-
side of a neuron and the outside. In deriving such models
from networks of neurons a number of assumptions are
made, such as a separation of timescales between neuron
and synaptic dynamics [3, 5]. These assumptions may
not necessarily hold.

In this paper we derive exactly a neural field model
from an infinite network of “theta neurons”. The theta
neuron is the normal form of a Type I neuron, for which
the onset of firing occurs through a saddle-node-on-a-
circle bifurcation as the input current is increased [12].
While the derivation is only exact for an infinite network,
we find that it predicts well the behaviour of a large finite
network. The derivation requires the form of communi-
cation between two neurons to be of a particular form,
but the coupling architecture can be arbitrary. Our work
builds on previous results for a network with no spatial
structure [13, 14].

The discrete model we consider consists of a network of
N theta neurons on a one-dimensional domain of length
L. The state of neuron j at time ¢ is 6;(¢) € [0, 27] and
the dynamics of the network is
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where the input to neuron j from other neurons in the
network is

I N
i=1

The parameter k is an overall coupling strength, and
P,(0) = an(1l — cos)™, n € NT, is a “pulse-like” func-
tion, where a,, is chosen so that fo% P,(0)d0 = 2m. P,
has a maximum at # = 7, and increasing n increases the
“sharpness” of this function. In the limit as n — oo,
i.e. for impulsive synapses, we have Py (0) = 275(0 — ).
The coupling from neuron ¢ to neuron j depends on only
the difference |j — i| (i.e. the distance between neurons)
and is given by

Kji = K(lj —ilAx) 3)

where Az = L/N and the function K will be specified be-
low. The neurons are assumed to be heterogeneous, and
we model this by randomly and independently choosing

the 77; from the Lorentzian distribution with mean 79 and
width A:

A/
g(n) = m (4)

The value of 7; governs neuron j’s behaviour in the ab-
sence of input: if 7; < 0 the neuron is excitable, whereas
if n; > 0, the neuron fires periodically. Thus n; = 0 is
the threshold for firing.

We consider the “Mexican-hat” coupling function
K(x) = 0.1 4+ 0.3cosz on the spatial domain [0, 27],
with periodic boundary conditions. This type of coupling
function means that nearby neurons excite one another
but inhibit more distant ones, and is commonly used in
modelling studies [3]. A periodic domain is appropriate
if  represents an angular variable such as head direction.

A typical example of the dynamics of (1)-(2) with
N = 600 is shown in Fig. 1. This state is a “bump”
state, as observed in a number of other simulations of
discrete networks of neurons [15, 16]. Neurons in part of
the domain are quiescent, while others are firing approx-
imately periodically. The firing frequency is a maximum
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Figure 1: (Color online) A simulation of (1)-(4) with cou-
pling function K(x) = 0.1 + 0.3cosz. (a): sinf, colour-
coded. (b): snapshot of the network at ¢ = 100. (c):
average firing frequency over 0 < ¢t < 100. Parameters:
L=2mk=2N=600,n=2mn =—0.4,A = 0.02.

in the centre of the bump, falling continuously to zero
at its edges. Such states are thought to play a role in
short term memory [17], since for these parameter values
the network is bistable; the “all off” state, where most
neurons are quiescent, is also stable (not shown). The
position of the bump in the network is determined by
the transient stimulus that moved the network into the
bump state (the transient contains the information to be
“remembered”), and this information can be retrieved at
a later time by determining the position of the fastest fir-
ing neuron. Similar bump states exist in this network at
these parameter values for N as small as 40, although fi-
nite size effects, in the form of “wandering” of the bump,
do become more prominent as N decreases.

We now take the continuum limit, N — oo, of the
discrete network and exactly derive the corresponding
neural field model. In this limit, the system is described
by the probability density function F(x,n, 6, t), such that
F(z,n,0,t)dx dn df is the probability that a neuron in
(z,z + dx) has a value of n in (n,17 + dn) and phase in
(0,0 + df) at time ¢ [18, 19]. This function satisfies the

continuity equation

oF 9
Sr+ 55 (F0) =0 (5)

where v is the continuum limit of the right hand side
(RHS) of (1):

v(z,0,n,t) =1 —cosO + (1 + cos@)[n+ kI(x,t)] (6)

where
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We also introduce the complex, space-dependent, order
parameter (the expected value of e*?)
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and below we derive a closed equation for the evolution
of z; this is the neural field model. To simplify (5)-(7)
we use the Ott/Antonsen ansatz [20, 21], i.e. we write

F(xvnvevt) = % {1 + i [OC(SU,T],t)]q eiq@ + C.C.}
- )

where “c.c.” is the complex conjugate of the preceding
term and « is a complex-valued function. Substitut-
ing (9) into (8) we obtain

Aaw=/wmmaamwm (10)
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and using standard properties of the Lorentzian to per-
form the integration over 7 [13, 18] we obtain z(x,t) =
a(x,no — 1A, t), where an overbar indicates complex con-
jugation. Now So et al. [13] showed that

n k
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and thus using (9) we obtain
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where

n k
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where d; ; is the Kronecker delta. Using this result and
the properties of the Lorentzian ¢g(n) one can show that

/Oo 9(n) (Co +> Cy{laly,n, )" + [aly,n, t)]q}> dn

=Co+ Y Co{lz(y, )" + [2(y, 1))} (15)
Thus

L
I(a,1) = / K(zr—y)H(z(y,tin)dy  (16)

where

Co+ > Cqlz1+72%)

q=1

H(z;n)=ay, (17)

(It can be shown that for impulsive coupling, H(z;00) =
(1—1zP)/(1+z+z+]z*).)
Now from the form of v we know that « satisfies [22]

) kI -1
a —i[L-i-(l—i—??—i—kI)a

ot 2
NN R

and evaluating this at n = ny — ¢A and simplifying we
obtain
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(19)

This is our neural field equation, a nonlocal partial dif-
ferential equation. The first term on the RHS of (19)
governs the local dynamics in the absence of input from
the rest of the network, and the second term describes the
contributions of the rest of the network to the dynamics
at position x through the integral (16).

Equation (19) is not in the usual form of a neural
field equation, since it is not immediately clear what
the physical interpretation of z is, and quantities such
as the firing rate of neurons (that normally appear in
neural field models) do not appear explicitly in (19).
For the physical interpretation, write z in polar form as
2(x,t) = r(z,t)e™ @ then marginalise (9) over 1 to
obtain the probability density function

1—7%(z,t)

2m{1 — 2r(z,t) cos [0 — (x, t)] + r2(x,t)}
(20)

At fixed x and t this is a unimodal function of 6 with

a maximum at # = 1, and whose sharpness is governed

by the value of r [18], i.e. the magnitude and phase of z

describe the distribution of phases, 6. As for the firing

rate, in the discrete network the total input to neuron j

is n; +kI; and its frequency is \/n; + kI; /7 [12]. Thus in

p(0,z,t) =
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Figure 2: Steady state of (19). Compare with Fig. 1. (a):
magnitude of z. (b): argument of z. (c): Frequency, as given
by (22). Parameters: L = 2m, k =2n =21 = —04,A =
0.02.

the continuum limit the frequency of neurons at position
z and time ¢ is

flet) =L /OO oI R @ Dy (21)

T J—kI(x,t)
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o 272
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A steady state of (19) is shown in Fig. 2, together with
the frequency profile '. Note that the system is invariant
with respect to translations in x, so this is one of a con-
tinuous family of solutions, each related to one another
by a shift in z. We see that away from the centre of the
domain, the magnitude of z is close to 1, indicating near
synchrony. The neurons are synchronised in the sense of
having similar phases, but they are quiescent, not firing.
The most likely phase of these quiescent neurons is given
by the phase of z, as plotting in panel (b). The neurons

1 The spatial domain was discretised with 100 equally-spaced
points, and the trapezoidal rule used to evaluate the integral (16).



near the centre of the domain are firing, but at differ-
ent rates, as shown by panel (c). We have repeated the
simulations shown in Figs. 1 and 2 with n = 3,5,10, 00
and found no qualitative differences between these cases,
indicating that the precise value of n is not important.

The behaviour in the centre of the domain in Fig. 2 is
worth commenting on. Consider a theta neuron with to-
tal input s: df/dt = 1 —cosf+ (14 cosf)s = h(6,s). For
0 < s < 1, h has a maximum at § = 7 and minimum at 0,
and thus the angular density (which is inversely propor-
tional to velocity) has a maximum at 0 and minimum at
7. The situation is reversed for s > 1, and the fact that
the total input to neurons in the centre of the bump is
greater than 1 is responsible for the two transitions of r
through 0 and the corresponding jump of approximately
T in .

We can follow steady states of (19) as parameters are
varied by spatially discretising and using standard algo-
rithms [23]. An example is shown in Fig. 3 where we vary
1o, the average input to the network, ignoring coupling.
We see that as ng is decreased, making it harder for neu-
rons to fire, a stable bump is destroyed in a saddle-node
bifurcation with an unstable bump. Profiles at two points
on the curve are shown in panel (b).

We have presented only a “bump” state, to demon-
strate the correspondence between a discrete network
of theta neurons and the associated neural field model.
However, a variety of other spatiotemporal patterns are
of interest and have been studied elsewhere, including
travelling fronts and bumps in one spatial dimension [3]
and travelling waves [7], spiral waves [8] and target pat-
terns [9] in two spatial dimensions. It would be of interest
to investigate such patterns in a model like (19), knowing
that there is a direct correspondence between this model
and the corresponding network of theta neurons.

Several other generalisations of the results here can be
mentioned. One involves including some kinetics in the
synaptic coupling. As presented, the input to a neuron
through the term I involves only the current state of
neurons coupled to it. A simple modification would in-
volve replacing kI; in (1) by kb;, where each b; satisfies
db;/dt = (I; —bj)/7. Altering the time-constant 7 would
allow one to consider fast (7 <« 1) and slow (7 > 1)
synapses.

One could also include spike frequency adaptation,
normally modelled by including a subtractive current
proportional to the firing rate [3, 24], which is given
by (22). More realistic neural field models include two
populations, one excitatory and one inhibitory, with
purely positive coupling between and within popula-
tions [10], and the network presented here is easily gen-

eralised to two such populations.

We finish by mentioning related work [25] in which
these authors show that a particular form of the Win-
free model of coupled oscillators, with coupling equiva-
lent to the P, that we use, can also be analysed exactly
in the continuum limit using the Ott/Antonsen ansatz.
The Winfree model includes a function referred to as the
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Figure 3: (Color online) (a): Maximum firing frequency in
the network as a function of 79. Solid: stable, dashed: unsta-
ble. (b): frequency profiles at the two points marked in (a)
(solid blue curve, blue circle; dashed red curve, red square).
Parameters: L =27,k =2,n=2,A =0.02.

“phase response curve” which can be measured experi-
mentally for an individual neuron [26], and the analy-
sis of Paz6 and Montbrié [25] relies on this being well-
approximated by a sinusoidal function. While these au-
thors did not consider spatially-extended networks, it
would be straight forward to generalise their results to
derive a spatially-extended model of a network of neu-
rons, as we did here.
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