Electronics and Computer Engineering (ECE) course overview

Graduates of the ECE major are multi-disciplinary, have good practical skills, and possess a systems approach to the design, development and management of software and hardware projects. They are capable of working in a team environment to solve problems from the device level through to networks, communication systems and embedded systems. ECE graduates therefore should have the knowledge and potential to become successful project leaders, systems analysts and system designers who are equally at home in a small company or large multi-national.

A student graduating with the major of Electronics and Computer Engineering has the following body of knowledge that distinguishes them from other majors within the BE(Hons):

- A competency in the use of a multi-disciplinary systems approach to meet the management and technical challenges of computer software and hardware design, electronics, control and communication engineering projects.
- The capability to determine the required specifications for new systems and making technical recommendations for such developments.
- An ability to apply international standards and practices in electronic, telecommunication, computer and control engineering.
- The ability to apply their knowledge in physics, mathematics, electronic circuits, communication systems, signal processing, software design, and embedded systems to the electronics, telecommunication, computer and information related industries in designing, developing, operating and maintaining products, systems and networks.

The ECE major consists of 29 courses, worth a total of 480 credits. In full-time mode, students study four courses per semester, and the duration to complete the programme is eight semesters. Figure 1.9 illustrates how the courses are distributed over the semesters.

Figure 1.9 Programme Map for the Electronics and Computer Engineering Major

Core programme courses develop:

1. **D**esign & **P**rofessional Practice attributes – referred to as the 'Project Based Spine'. Students must complete a project (per semester or double semester) that involves utilising the common practice of the engineering method to solve a variety of problems. The problems increase in difficulty, and the

students' solutions increase in sophistication as the students advance through the four-year programme. The results of this project-based spine approach are that students gain experience at developing technically detailed problem-solutions, and develop other attributes, such as communication, teamwork, financial and sustainable design skills. For the ECE major the following are examples of projects that the students undertake:

First Part	The first project has well-defined system boundaries, stakeholders and deliverables, where significant support is provided with information and decision-making. Students start developing their practical skills needed to design and solve engineering problems. Electronics and Computer Engineering students are combined with Mechatronics students in teams to develop cars with conflicting objectives of speed and load carrying capacity. Designs are optimised by identifying factors which affect performance before competing in a competition to determine which vehicle performs best in the speed and weight categories.							
	The second project requires the definition of system boundaries and deliverables, where available information is both ambiguous and incomplete. Teams are made up of students from across the different engineering and food technology majors. An existing NZ industry is selected by each team and students examine the life cycle of the product. Ideas are generated for how the industry can become more sustainable in the future. Feasibility of the ideas are examined taking into account social, cultural, environmental, and financial considerations. Industries selected include avocados, salmon, timber, mushrooms, wine and hemp.							
Second Part	The third project is based on the context of a specific company or industry where requiring the definition of system boundaries, the identification of constraints and decision making based on uncertainty (mainly related to market information) and trade-offs (mainly related to prioritization of product features). The types of companies the students study are Spidertracks, Tait Communications, Fisher & Paykel Healthcare, Levno, etc.							
	The fourth project involves planning the launch (i.e. designing and testing the machine and meeting the initial marketing plan) of a new coil winding machine, which is complementary to a Company's existing range. The Company is of medium size and is well established as a supplier of a range of coil winders, mainly to Europe. It has Marketing, Sales, Design and Production departments and the typical infrastructure departments (Finance HR etc).							
Third Part	The fifth project is based on the design of an autonomous vacuum cleaner. The context for the project is well defined, centred on a hypothetical NZ based company that has experience in the design, manufacturing and marketing of robotic systems. Although there is significant freedom in the development of the design concept, significant constraints are imposed in terms of system functionality, and development budget. Sustainability is imposed as an essential requirement for the final product concept, particularly emphasising legislative constraints and Life Cycle Analysis.							
	Although a clear design brief is provided, the level of direction and supervision is significantly reduced, relative to previous projects. Definition of team goals and milestones, allocation of individual responsibilities (based on disciplines) with the team, and overall project management are central to successful project outcomes and assessment. A strong emphasis is also placed on							

	(a) technical problem solving, using knowledge from within the programme									
	including mechanical design, electronic circuit design, embedded system desi									
	computer programming, mathematics, communication and control systems;									
	(b) acquiring knowledge required to resolve specific project issues.									
Fourth Part	A sixth, capstone project is regarded as the culmination of the degree – the bringing									
	together of all learning from throughout the programme and a demonstration of the									
	students' ability to clearly define the scope, outcomes, and deliverables from a									
	complex engineering problem, and to enable successful resolution of this problem									
	through appropriate project planning and implementation. As such, the project places									
	significant demands on the student to solve a problem of significant complexity, which									
	is largely defined by the breadth of scope and the need to seek and resolve inputs									
	from a broad range of stakeholders and disciplines. A particular feature of the									
	Capstone project is the requirement for the students to take full responsibility for the									
	project definition, planning and completion with limited supervision and guidance.									
	The problems are ones encountered by the industry or research organizations.									

2. Knowledge attributes – these courses are focused on embedding the underlying sciences (such as mathematics and physical principles). Along with the project spine, a final year individual 30 credit research project ensures that students apply their technical knowledge and have an opportunity explore the forefront of the major's discipline. The topic of research could be in any area of electronics and computer engineering. Examples of possible topics include image denoising, memristor circuits, accelerating computing, localization and mapping algorithms for mobile robots, waveform design of ultra-wideband signals, nonlinear control of an inverted pendulum and models of hearing impairment.

Major specific courses develop the knowledge attributes. These courses provide a systematic coverage of the coherent body of knowledge related to electronics and computer engineering. They are focused on the technical knowledge in electronic circuits, computer hardware and software design, machine learning, communication networks, and signal processing. Many of the courses, particularly within the first two years, are shared with the Mechatronics major. Other courses are drawn from Computer Science and Information Technology. In their final year, the major specific courses focus on applying these underlying fundamentals within communications, data acquisition, and signal processing domains. Table 1.11 shows how courses contribute to building the specific body of knowledge for the Electronics and Computer Engineering major.

The prescribed elective in the final year allows students to focus on an area of information technology and computing that is of interest to them.

Knowledge Profile	Courses that Contribute to Building the Body of Knowledge for the							
	Major							
WK1: A systematic, theory-based	124.104 Physics 1A: Mechanics and Thermodynamics							
understanding of the natural sciences	124.105 Physics 1B: Electricity, Waves and Modern Physics							
WK2: Conceptually-based mathematics	150,100 Drogramming for Engineering and Technology							
numerical analysis statistics and formal	159.100 Programming for Engineering and Technology							
aspects of computer and information science	160.101 Calculus							
to support analysis and modelling applicable	150.270 Hardware Oriented Computing							
to the discipline	229.271 Engineering Mathematics 2							
	220.27 I Linguitering Mathematics 2 281 272 Signals and Systems							
	158 222 Data Wrangling and Machine Learning							
	158 333 Annlied Machine Learning and Rig Data							
	228 371 Statistical Modelling for Engineers & Technologists							
	281 755 Digital Signal Processing							
WK3: A systematic, theory-based	124 104 Physics 1A: Mechanics and Thermodynamics							
formulation of engineering fundamentals	124.105 Physics 18: Electricity Wayes and Modern Physics							
required in the engineering discipline	281 281 Analogue Electronic Systems							
	281 282 Digital Electronic Systems							
	281 272 Signals and Systems							
	158,222 Data Wrangling and Machine Learning							
	158 333 Applied Machine Learning and Big Data							
	281.353 Control Engineering							
	281.384 Embedded Systems Design							
WK4: Engineering specialist knowledge that	228.311 Eng Practice 5: Design with Constraints							
provides theoretical frameworks and bodies	228.371 Stats Modelling for Engineers & Technologists							
of knowledge for the accepted practice areas	281.353 Control Engineering							
in the engineering discipline; much is at the	158.333 Applied Machine Learning and Big Data							
forefront of the discipline.	218.741 Light and Lighting							
	228.798 Individual Research Project							
	281.755 Digital Signal Processing							
	281.776 Advanced Communication Engineering							
	281.780 Advanced Electronic Circuits							
WK5: Knowledge that supports engineering	247.114 Science and Sustainability for Eng. and Tech.							
design in a practice area	228.115 Engineering and Technology Principles							
	159.270 Hardware-Oriented Computing							
	228.211 Eng Practice 3: Product Development							
	228.212 Eng Practice 4: Materials & Manufacturing							
	281.281 Analogue Electronic Systems							
	281.282 Digital Electronic Systems							
	228.311 Eng Practice 5: Design with Constraints							
	281.384 Embedded Systems Design							
	218.741 Light and Lighting							
	281.755 Digital Signal Processing							
	281.776 Advanced Communication Engineering							
	281.780 Advanced Electronic Circuits							
	228.711 Eng Practice 6: Design Capstone Project							
	228.798 Individual Research Project							
WK6: Knowledge of engineering practice	228.212 Eng Practice 4: Materials & Manufacturing							
(technology) in the practice areas in the	281.384 Embedded Systems Design							
engineering discipline								

Table 1.11 Electronics and Computer Engineering Major Body of Knowledge

WK7: Comprehension of the role of engineering in society and identified issues in engineering practice in the discipline: ethics	 158.333 Applied Machine Learning and Big Data 228.311 Eng Practice 5: Design with Constraints 218.741 Light and Lighting 281.776 Advanced Communication Engineering 281.780 Advanced Electronic Circuits 228.711 Eng Practice 6: Design Capstone Project 247.114 Science and Sustainability for Eng. and Tech. 228.115 Engineering and Technology Principles 228.211 Eng Practice 3: Product Development 					
and the professional responsibility of an engineer to public safety; the impacts of engineering activity: economic, social, cultural, environmental and sustainability WK8: Engagement with selected knowledge in the research literature of the discipline	 228.211 Eng Practice 3: Product Development 228.212 Eng Practice 4: Materials & Manufacturing 228.311 Eng Practice 5: Design with Constraints 228.711 Eng Practice 6: Design Capstone Project 247.114 Science and Sustainability for Eng. and Tech. 228.211 Eng Practice 3: Product Development 					
	 228.212 Eng Practice 4: Materials & Manufacturing 228.311 Eng Practice 5: Design with Constraints 228.711 Eng Practice 6: Design Capstone Project 228.798 Individual Research Project 281.776 Advanced Communication Engineering 					

The Engineering Body of Knowledge (WA1 Learning Outcome Summary) table and the Accord Attribute tables (WA2 to WA12) for the ECE Major are provided in Appendix 1.2. A concise overview of the alignment of the compulsory courses to the Washington Accord attributes is shown in Table 1.12.

Table 1.12 Washington Accord Attributes alignment map for BE(Hons) – ECE courses

				WA Attributes											
			Common courses ECE specific courses Project-spine courses	Engineering Knowledge	Problem Analysis	Design/Development of Solution	Investigation	Modern Tool Usage	The Engineer and Society	Environment and Sustainability	Ethics	Individual and Teamwork	Communication	Project Management	Lifelong Learning
		Course Number	Course Title	1	2	3	4	5	6	7	8	9	10	11	12
		124.104	Physics 1A: Mechanics and Thermodynamics	\boxtimes	\boxtimes		\boxtimes	\boxtimes							\boxtimes
	_	160.102	Algebra	\boxtimes	\boxtimes			\boxtimes							
	S1	228.115	Engineering and Technology Principles	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes		\boxtimes		
_		Elective													
ear (159.100	Programming for Engineering and Technology	\boxtimes				\boxtimes					\boxtimes		
>	~	124.105	Physics 1B: Electricity, Waves and Modern Physics												
	S	160.101	Calculus	\boxtimes	\boxtimes			\boxtimes							
		247.114	Science and Sustainability for Engineering and Technology			\boxtimes	\boxtimes		\boxtimes	X	X	X	X	\boxtimes	\boxtimes
		281.281	Analogue Electronic Systems	\boxtimes	\boxtimes			\boxtimes							
	1	228.271	Engineering Mathematics 2	\boxtimes	\boxtimes			\boxtimes							
	S	158.222	Data Wrangling and Machine Learning	\boxtimes	\boxtimes		\boxtimes	\boxtimes							
2		228.211	Engineering Practice 3: Product Development	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	X	\boxtimes	\boxtimes
Year		281.282	Digital Electronic Systems	\boxtimes	\boxtimes			\boxtimes					\boxtimes		
		281.272	Signals & Systems	\boxtimes	\boxtimes			\boxtimes							
	S2	159.270	Hardware-Oriented Computing	\boxtimes	\boxtimes			\boxtimes					\boxtimes		
		228.212	Engineering Practice 4: Materials & Manufacturing		\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes		
		281.384	Embedded Systems Design	\boxtimes	\boxtimes			\boxtimes					X		
		218.741	Light and Lighting	\boxtimes	\boxtimes	\boxtimes									
	S1	228.371	Statistical Modelling for Engineers & Technologists		\boxtimes		\boxtimes	\boxtimes							
ar 3		228.311	Engineering Practice 5: Engineering Design with Constraints												
Ye		281.353	Control Engineering	\boxtimes	\boxtimes		\boxtimes	\boxtimes							
	S2	158.333	Applied Machine Learning and Big Data Processing				\boxtimes								
		158.235	Networks, Security and Privacy	\boxtimes	\boxtimes			\boxtimes					\boxtimes		
		228.311	Engineering Practice 5: Engineering Design with Constraints		X	X	X						X		
Year 4	S1	281.755	Digital Signal Processing		\boxtimes		\boxtimes								
		281.776	Advanced Communications Engineering		\boxtimes		\boxtimes			\boxtimes			\boxtimes		\boxtimes
		228.798	Individual Research Project	\boxtimes	\boxtimes		\boxtimes	\boxtimes			\boxtimes		\boxtimes		\boxtimes
		228.711	Engineering Practice 6: Design Capstone Project	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes
		281.780	Advanced Electronic Circuits	\boxtimes	\boxtimes			\boxtimes							
	2	228.798	Individual Research Project	\boxtimes	\boxtimes		\boxtimes	\boxtimes			\boxtimes		\boxtimes	\boxtimes	\boxtimes
	S	228.711	Engineering Practice 6: Design Capstone Project	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes	\boxtimes
	_	Elective													