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Abstract

We consider a pair of identical theta neurons in the active regime,
each coupled to the other via a delayed Dirac delta function. The net-
work can support periodic solutions and we concentrate on solutions
for which the neurons are half a period out of phase with one another,
and also solutions for which the neurons are perfectly synchronous.
The dynamics are analytically solvable, so we can derive explicit ex-
pressions for the existence and stability of both types of solutions. We
find two branches of solutions, connected by symmetry-broken solu-
tions which arise when the period of a solution as a function of delay
is at a maximum or a minimum. 2020 MSC codes: 92B20, 92B25,
34K24; keywords: neuron dynamics, delay differential equations, bi-
furcation.

1 Introduction

Many physical entities such as neurons and lasers can be modelled as os-
cillators [5, 19]. Coupling them together results in a network of coupled
oscillators. The effect of one oscillator on others in a network may be de-
layed due to, for example, the finite speed of light, or of action potentials
propagating along axons [3, 5].

One of the simplest model oscillators is the theta neuron [4], which is the
normal form of the saddle-node-on-invariant-circle (SNIC) bifurcation [7]. A
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theta neuron has a single parameter, I, which can be chosen so that the neu-
ron is either excitable or active (periodically firing). It has the advantage
that its state can be found explicitly as a function of time for constant I [14].
In a previous paper [14] we considered a single theta neuron with delayed
self-coupling (an autapse [21]) in the form of a Dirac delta function of time.
The action of a delta function on a theta neuron can be easily calculated, so
we were able to analytically describe periodic solutions of this model and de-
termine their stability, giving a complete description of the types of periodic
solutions, where they occur in parameter space and their stability.

More recently we considered a pair of theta neurons, each coupled to
the other through delayed delta functions [15]. We considered the case of
excitable neurons and found two types of periodic solutions: those for which
the neurons were perfectly synchronous, and those for which the neurons were
half a period out of phase with one another. Extending the analysis in [14]
we derived explicit expressions for the existence and stability of both types
of solutions. We also described symmetry-broken solutions and analytically
determined their stability. We found disconnected branches of solutions, all
of which lose stability when the period of a solution as a function of delay is
at a minimum.

This paper considers a pair of theta neurons, each coupled to the other
through delayed delta functions, but when the uncoupled neurons are active.
We perform similar analysis to that in [15], finding two continuous branches
of periodic solutions, one for which the neurons are perfectly synchronous,
and one for which they alternate firing. These branches undergo symmetry-
breaking bifurcations whenever the period as a function of delay is either a
maximum or a minimum. The model is presented in Sec. 2, synchronous
solutions are studied in Sec. 3, and alternating ones in Sec. 4. Symmetry-
broken solutions are studied in Sec. 5, we consider the case of smooth feedback
in Sec. 6 and conclude in Sec. 7.

2 Model

We first consider a single theta neuron [4] governed by

dθ

dt
= 1− cos θ+ (1+ cos θ)I, (1)

where θ ∈ [0, 2π) and I is a positive constant. The solution of (1) is

θ(t) = 2 tan−1

[√
I tan

(√
It+ tan−1

(
tan[θ(0)/2]√

I

))]
. (2)
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In what follows we set I = 1, and thus a single theta neuron satisfies dθ/dt =
2 and thus θ(t) = θ(0)+2t. (While this may seem to be a drastic assumption,
if I ̸= 1 letting tan (θ/2) =

√
I tan (ϕ/2) we find that dϕ/dt = 2 [18].)

In this paper we consider a pair of such neurons coupled to one another
via delayed Dirac delta functions, described by

dθ1

dt
= 1− cos θ1 + (1+ cos θ1)

(
1+ κ

∑
i:t−τ<si<t

δ(t− si − τ)

)
(3)

dθ2

dt
= 1− cos θ2 + (1+ cos θ2)

(
1+ κ

∑
i:t−τ<ti<t

δ(t− ti − τ)

)
, (4)

where τ is the (constant) delay and firing times in the past of neuron 1
can be written {. . . , t−3, t−2, t−1, t0} and those of neuron 2 can be written
{. . . , s−3, s−2, s−1, s0}. The constant κ is the strength of coupling between
the neurons. The influence of the delta function is to increment θ using

tan (θ+/2) = tan (θ−/2) + κ, (5)

where θ− is the value of θ before the delta function acts and θ+ is the value
after [14]. Such a network with I = −1 (i.e., when both neurons are excitable
rather than active) and 0 < κ was considered in [15].

Example solutions of (3)-(4) are shown in Fig. 1. In this paper we focus on
solutions of the form shown: either both neurons are perfectly synchronous,
or they are half a period out of phase with one another. Since between
the times at which a delta function acts we have dθ/dt = 2, and we know
the effect of the delta function, (5), we can analytically construct solutions
such as those in Fig. 1 and determine their stability. In Sec. 3 we consider
synchronous solutions and in Sec. 4 we consider alternating solutions.

3 Synchronous solutions

We first consider periodic solutions of (3)-(4) for which the neurons are per-
fectly synchronous, as shown in the top row of Fig. 1. The influence of one
neuron on the other is thus the same as that of the neuron on itself. The
existence of such solutions is governed by the same equation that governs the
behaviour of a single neuron delay-coupled to itself [14].
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Figure 1: Example periodic solutions of (3)-(4). The top row shows syn-
chronised solutions while the bottom shows alternating solutions. The left
column has κ = 2 while the right has κ = −1. All have τ = 2.

3.1 Existence

As shown in [14], perfectly synchronous periodic solutions of (3)-(4) with
period T satisfy

(n+ 1)T = τ+
π

2
− tan−1

[
κ+ tan

(
τ− nT +

π

2

)]
, (6)

where tan−1 is the arctangent function and n is the number of past firing
times in the interval (−τ, 0), assuming that a neuron has just fired at time
t = 0. The primary branch of solutions, corresponding to n = 0, is given
explicitly by

T(τ) = τ+
π

2
− tan−1

[
κ+ tan

(
τ+

π

2

)]
(7)

for 0 ⩽ τ ⩽ π, while secondary branches are given parametrically, using the
reappearance of periodic solutions in delay differential equations with fixed
delays [25], as

(τ, T) = (s+ nT(s), T(s)), (8)
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where 0 ⩽ s ⩽ π. Several branches of such solutions are shown in blue in
Fig. 2.

3.2 Stability

We now derive the stability of a synchronous periodic solution. Suppose
neuron 1 last fired at time t0 and neuron 2 last fired at s0 where s0 ≈ t0.
The most distant past firing of neuron 1 in (t0 − τ, t0) is t−n and the most
distant past firing of neuron 2 in (s0 − τ, s0) is s−n.

For neuron 1, from t0 we wait τ−(t0− s−n) at which point neuron 1 has
its phase incremented due to a past firing of neuron 2. Before the reset, θ1

equals
θ−
1 = π+ 2(τ− (t0 − s−n)),

and after reset it is θ+
1 where

tan (θ+
1 /2) = tan (θ−

1 /2) + κ.

Neuron 1 will then fire after a further time ∆1 where

∆1 =
π− θ+

1

2
.

Thus

t1 = t0 + τ− (t0 − s−n) + ∆1

= τ+ s−n + π/2− tan−1[κ+ tan(π/2+ τ− (t0 − s−n))]. (9)

Similarly for neuron 2, from time s0 we wait τ− (s0 − t−n) until neuron
2 has its phase incremented as a result of the past firing of neuron 1. Before
the reset θ2 equals

θ−
2 = π+ 2(τ− (s0 − t−n)),

and after the reset it equals θ+
2 where

tan (θ+
2 /2) = tan (θ−

2 /2) + κ.

Neuron 2 will then fire after a further time ∆2 where

∆2 =
π− θ+

2

2
.

So

s1 = s0 + τ− (s0 − t−n) + ∆2

= τ+ t−n + π/2− tan−1[κ+ tan(π/2+ τ− (s0 − t−n))]. (10)
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Equations (9) and (10) give t1 and s1 in terms of previous firing times,
but in general we have

si+1 = τ+ ti−n + π/2− tan−1[κ− cot(τ− (si − ti−n))] (11)

ti+1 = τ+ si−n + π/2− tan−1[κ− cot(τ− (ti − si−n))], (12)

where we used tan (π/2+ x) = − cot x. We write (11)-(12) as

F(si+1, ti−n, si) = 0 (13)

G(ti+1, si−n, ti) = 0. (14)

To find the stability of a solution we perturb ti → ti + ηi and si → si + µi.
Then to linear order we have

∂F

∂si+1

µi+1 +
∂F

∂ti−n

ηi−n +
∂F

∂si
µi = 0 (15)

∂G

∂ti+1

ηi+1 +
∂G

∂si−n

µi−n +
∂G

∂ti
ηi = 0, (16)

which, after evaluating the partial derivatives at a periodic solution with
period T , we write as

−µi+1 + (1− γ)ηi−n + γµi = 0 (17)

−ηi+1 + (1− γ)µi−n + γηi = 0, (18)

where

γ =
csc2 (τ− nT)

1+ [κ− cot (τ− nT)]2
. (19)

This is the same quantity as was found in [14] when studying the stability
of a periodic solution of a self-coupled theta neuron. Assuming solutions of
the linear equations (17)-(18) of the form µi = Aλi and ηi = Bλi for some
constants A and B, as in [15], we obtain the characteristic equation for the
multipliers, λ:

Fa(λ) ≡ λ2n+2 − 2γλ2n+1 + γ2λ2n − (1− γ)2 = 0. (20)

This is the same equation as was found in [15], where two excitable neurons
were studied, the only difference being the definition of γ. The magnitudes
of the roots of Fa(λ) determine the stability of the perfectly synchronous pe-
riodic solution. If all roots have |λ| ⩽ 1 the periodic solution is not unstable,
but if one or more roots have |λ| > 1 the periodic solution is unstable.

We first consider the case n = 0. Then Fa(λ) = (λ− 1)(λ+ 1− 2γ). The
root λ = 1 reflects the invariance of the system to uniform time translation,
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and since 0 < γ the only instability that can occur is when γ = 1. This point
corresponds to dT/dτ = 0 on the primary branch. To see that this is the
case, differentiating (7) with respect to τ we find that dT/dτ = 1− γ where
γ is given by (19) with n = 0. Thus dT/dτ = 0 when γ = 1.

Summarising the results in [15] for 0 < n, we find that such a synchronous
solution undergoes two types of bifurcations, one when dT/dτ = 0 and the
other at a saddle-node bifurcation (i.e. when the curve of period, T , as a
function of delay, τ, is either vertical or horizontal) on each branch, indexed
by n.

3.3 Branches of solutions

Plotting branches of solutions as given by (7)-(8) for κ = 2, and indicating
their stability, we obtain the blue curve in Fig. 2. Note that these curves
are the same as shown in Fig. 7 of [14], but their stability is different, due
to the possibility of losing stability to a solution which is not synchronous.
These symmetry broken states are shown in black in Fig. 2, and they are
analysed in Sec. 5.1. Note: if on an unstable section of a branch there
are two saddle-node bifurcations (marked with filled circles in Fig. 2) there
are two unstable multipliers between the bifurcations. Stable solutions lose
stability in symmetry-breaking bifurcations when dT/dτ = 0, and between a
symmetry-breaking and a saddle-node bifurcation a solution has one unstable
multiplier.

4 Alternating solutions

We now consider solutions for which the neurons take turns firing, half a
period out of phase with one another, as shown in the bottom row of Fig. 1.

4.1 Existence

As shown in [15], the existence of alternating solutions of (3)-(4) is given
by (6) under the replacement of τ by τ+ T/2:

(n+ 1/2)T = τ+
π

2
− tan−1

[
κ+ tan

(
τ− (n− 1/2)T +

π

2

)]
. (21)

The meaning of n in (21) is that if neuron 1 fires at time 0, there are n past
firing times of neuron 2 in (−τ, 0); n could be zero.
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Figure 2: Blue: synchronous periodic solutions (solid stable, dashed unsta-
ble). The nth branch goes from (nπ,π) to ((n + 1)π,π). Red: alternating
periodic solutions (solid stable, dashed unstable). The nth branch goes from
((n − 1/2)π,π) to ((n + 1/2)π,π). Black: symmetry-broken periodic solu-
tions (all unstable, except the branch at τ = 0 which is neutrally stable).
The filled circles indicate saddle-node bifurcations. κ = 2.

4.2 Stability

Performing a similar analysis as in Sec. 3.2 or [15] we obtain the firing time
maps, valid when the oscillators are approximately half a period out of phase:

ti+1 = τ+ si+1−n + π/2− tan−1 [κ+ tan (π/2+ τ− (ti − si+1−n))] (22)

si+1 = τ+ ti−n + π/2− tan−1 [κ+ tan (π/2+ τ− (si − ti−n))] (23)

for i = 0, 1, 2, . . . .
We want to linearise around an alternating periodic solution of (22)-(23).

To do that, write (22)-(23) as

R(ti+1, si−n+1, ti) = 0 (24)

S(si+1, ti−n, si) = 0, (25)

then perturb the firing times and assume that these perturbations either grow
or decay exponentially with index. The calculations are similar to those in
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Sec. 3.2 and we obtain the characteristic equation governing the stability of
these solutions:

Fb(λ) ≡ λ2n+1 − 2γλ2n + γ2λ2n−1 − (1− γ)2 = 0, (26)

where

γ =
csc2 (τ− (n− 1/2)T)

1+ [κ− cot (τ− (n− 1/2)T)]2
. (27)

This characteristic equation was found in [15] for the case of two excitable
neurons, but in that paper γ referred to a different quantity, not that in (27).
Using the results in [15] for the roots of (26) we have that the alternating
periodic solution with n = 0 is stable for 0 < γ < 1 and unstable for
1 < γ. For 0 < n each branch of alternating periodic solutions undergoes
two bifurcations when the curve of T as a function of τ is either vertical or
horizontal, just as for the synchronous solutions. Branches of these solutions
are shown in red in Fig. 2, with stability indicated. Saddle-node bifurcations
are also shown.

5 Symmetry-broken solutions

As mentioned, both types of solutions analysed above undergo bifurcations
when dT/dτ = 0. These are symmetry-breaking bifurcations and we now
analyse the resulting solutions.

5.1 Symmetry-breaking from synchronous solutions

We start with (11)-(12) and break the symmetry so that si − ti−n = (n −
ϕ)T and ti − si−n = (n + ϕ)T ; thus ϕ = 0 corresponds to the perfectly
synchronous case. Substituting these into (11)-(12) we obtain equations for
the existence of such states:

tan (π/2+ τ− (n+ 1− ϕ)T) = κ+ tan (π/2+ τ− (n− ϕ)T) (28)

tan (π/2+ τ− (n+ 1+ ϕ)T) = κ+ tan (π/2+ τ− (n+ ϕ)T). (29)

Using the identity tana− tanb = sin (a− b)/(cosa cosb) on first (28) and
then on (29), and the fact that cosine is an even function, we find that
solutions of (28)-(29) satisfy T = 2τ/(2n+1). In this case both (28) and (29)
reduce to

cot ((1/2− ϕ)T) = κ− cot ((1/2+ ϕ)T). (30)

For fixed κ, solutions of (30) lie on a curve in (T ,ϕ) space, as shown in Fig. 3.
The curves terminate at ϕ = ±1/2, and these values correspond to alternat-
ing solutions. When ϕ = ±1/2 we see from (30) that T = π, independent
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Figure 3: Solutions of (30), describing symmetry-broken solutions, for κ =
4, 2, 1 (left to right).

of κ. When ϕ = 0 we have T = 2 cot−1 (κ/2). Thus the symmetry-broken
solutions lie on the lines T = 2τ/(2n + 1) where (2n + 1) cot−1 (κ/2) ⩽ τ ⩽
(n+ 1/2)π and are plotted in black in Fig. 2 emanating from each minimum
on the curve of synchronous solutions (shown in blue). They each terminate
at a maximum on the curve of alternating solutions (shown in red). Note
that only every second of the black curves shown in Fig. 2 are described by
this analysis; the other curves are analysed in Sec. 5.2. The stability of these
types of solutions can be calculated as in [15] and they are all unstable.

5.2 Symmetry-breaking from alternating solutions

5.2.1 τ = 0 solutions

We see from Fig. 2 that a symmetric alternating solution exists for τ = 0.
But a whole family of asymmetric solutions also exist, shown with the vertical
black line at τ = 0 in Fig. 2. We now analyse them.

Between firing times the flow is given by dθ1/dt = 2 and dθ2/dt = 2.
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Assume that θ2 has just fired (i.e., θ2 = π) and θ1 = α where 0 < α < π.
Both θ1 and θ2 will increase until θ1 = π, which takes a time ∆1 = (π −
α)/2, at which point θ2 = 2π − α. The phase θ2 is then incremented to
θ+
2 = 2 tan−1 (κ+ tan (π− α/2)). Both phases then continue to increase

until θ2 = π, which takes a further time ∆2 = (π − θ+
2 )/2, at which point

θ1 = π + 2∆2 = 2π − θ+
2 . The phase θ1 is then incremented to θ+

1 =
2 tan−1 (κ+ tan (π− θ+

2 /2)). For this process to describe a periodic solution
we need θ+

1 = α, which is true for all 0 < α < π. (A similar calculation
can be done for π < α < 2π.) Thus there is a continuum of such periodic
solutions.

The period of such a solution is T = ∆1 + ∆2 and so we can write ∆1 =
(1/2 + ϕ)T and ∆2 = (1/2 − ϕ)T for some −1/2 < ϕ < 1/2, where ϕ = 0
corresponds to the symmetric alternating solution. We find that cot (∆1) =
tan (α/2) and cot (∆2) = κ− tan (α/2) and thus cot (∆2) = κ− cot (∆1), or

cot ((1/2− ϕ)T) = κ− cot ((1/2+ ϕ)T), (31)

which is identical to (30), whose solutions are shown in Fig. 3. This family
of asymmetric solutions lie on the T axis with 2 cot−1 (κ/2) < T ⩽ π and are
shown in black in Fig. 2. These solutions are neutrally stable, as there is a
continuum of them.

5.2.2 τ > 0 solutions

The solutions in the previous section exist for τ = 0. Using the reappearance
of solutions of DDEs we see that a solution with a given ϕ and T which
satisfies (31) is also a periodic solution with the same ϕ and T when the
delay equals a multiple of T . Thus these symmetry-broken solutions lie on
the lines T = τ/n with 2n cot−1 (κ/2) < τ ⩽ nπ; these are shown black in
Fig. 2. These lines leave minima on the curves of alternating solutions (shown
in red) when ϕ = 0 and terminate at maxima on curves of synchronous
solutions (shown in blue) when ϕ = ±1/2. The stability of these solutions
can be determined using calculations similar to those in [15], and they are
unstable.
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6 Smooth feedback

We now consider the case of smooth feedback, to see whether the results for
Dirac delta function coupling persist. The equations we study are

dθ1

dt
= 1− cos θ1 + (1+ cos θ1) {1+ κP[θ2(t− τ)]} (32)

dθ2

dt
= 1− cos θ2 + (1+ cos θ2) {1+ κP[θ1(t− τ)]} , (33)

where
P(θ) = am(1− cos θ)m,

with am = 2m(m!)2/(2m)!, is a pulsatile function centred at θ = π with∫2π

0 P(θ)dθ = 2π for all m. Increasing m makes this function “sharper” and
in the limit m → ∞ we have P(θ) = 2πδ(θ − π) where δ is the Dirac delta
function [13].

We set m = 5 and find branches of synchronous and alternating solu-
tions using DDE-BIFTOOL [22]. They are plotted in Fig. 4, as are the
symmetry-broken solutions, with stability indicated. We find perfect quali-
tative agreement with the results shown in Fig. 2, obtained for delta function
coupling, showing the robustness of our results.

7 Discussion

We exactly described periodic solutions that occur in a pair of delay-coupled
active theta neurons, and analytically found their stability. Our work is an
extension of that in [15] where a pair of excitable theta neurons were studied.
The results are similar, in that symmetry-breaking instabilities were found
where dT/dτ = 0. To obtain periodic solutions for excitable systems we
needed excitatory coupling, i.e. 0 < κ. The results in this paper also had
0 < κ, but that is not necessary to see periodic solutions in networks of active
neurons. The analysis performed here is equally valid for inhibitory coupling
(κ < 0), the main difference being that all solutions will have periods greater
than or equal to π (the period of an uncoupled neuron) as inhibition can only
slow down oscillations.

We now briefly discuss similar work by others. A number of authors
have considered delay-coupled phase oscillators which rotate at a constant
speed when uncoupled, as we do. However, some choose the interactions
between oscillators to be smooth, depending on sinusoidal functions of phase
differences, for example [2, 3, 20, 26]. Others consider uniformly rotating
oscillators with delayed delta function coupling [6, 8, 17, 24], but none have
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Figure 4: Periodic solutions of (32)-(33). Blue: synchronous solutions; red:
alternating solutions. Solid: stable; dashed: unstable. The symmetry-broken
solutions (all unstable) are shown in black. Filled circles show the points at
which the number of unstable Floquet multipliers of a solution has changed
from one to two; these are saddle-node bifurcations. m = 5, κ = 2.

used the update rule (5) specific to a theta neuron with pulsatile current
input. As an example, Klinshov et al. [10] study a model containing a phase
resetting curve Z(θ−) = θ+ − θ− where θ− is the value of θ before the delta
function acts and θ+ is the value after. For the update rule (5) we have

Z(θ) = 2 tan−1 [tan (θ/2) + κ] − θ.

One can show that −1 < Z ′(θ) so neither a single self-coupled theta neuron
nor a pair of them as considered here can undergo a “multijitter” bifurcation
of the type seen in [9, 10, 11].

We note that a number of authors (including this one [16]) write dθ/dt =
[· · · ] + f(θ)δ(t− τ) to indicate that θ is incremented by the amount f(θ) at
t = τ. However, this interpretation of the impulsive differential equation is
incorrect [1, 12]. Alternating and synchronous periodic solutions were found
in a pair of delay-coupled FitzHugh-Nagumo systems [23], however this work
and [15] are the most comprehensive studies of this phenomena so far, aided
by the analytical solutions of the models under study.
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