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Abstract

The complex Ginzburg–Landau (CGL) equation on a one-dimensional domain with periodic boundary conditions has a
number of different symmetries, and solutions of the equation may or may not be fixed by the action of these symmetries. We
investigate the stability of chaotic solutions that are spatially periodic with periodL with respect to subharmonic perturbations
that have a spatial periodkL for some integerk > 1. This is done by considering the isotypic decomposition of the space of
solutions and finding the dominant Lyapunov exponent associated with each isotypic component. We find a region of parameter
space in which there exist chaotic solutions with spatial periodL and homogeneous Neumann boundary conditions that are
stable with respect to perturbations of period 2L. On varying the parameters it is possible to arrange for this solution to become
unstable to perturbations of period 2L while remaining chaotic, leading to asupercritical subharmonic blowout bifurcation.
For a large number of parameter values checked, chaotic solutions with spatial periodL were found to be unstable with respect
to perturbations of period 3L. We conclude that while periodic boundary conditions are often convenient mathematically, we
would not expect to see chaotic, spatially periodic solutions forming starting with an arbitrary, non-periodic initial condition.
©2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The formation of patterns in the solutions of partial differential equations which model many physical systems
has been the subject of much interest over many decades. Associated with this are ideas ofself organisationin which
particular patterns are chosen by a particular system and this is determined by the stability of different patterns since
only stable solutions will be seen in practice. Mathematically speaking, solutions of an equation are found in a
particular function space. The question of stability can be a delicate one since it is often necessary to consider the
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effects of small perturbations on the solution which are not in the same space as the solution. A simple example is
when a solution has certain symmetry properties but such a solution may be unstable to perturbations which break
the symmetry of the solution.

Studies in pattern formation are usually concerned with either steady state or time periodic solutions of PDEs
and patterns are often associated with symmetries of the solutions [10]. However, we consider patterns that occur
in spatio-temporally chaotic solutions of PDEs, which are defined in terms of their symmetries, and of particular
interest is their stability with respect to perturbations which break the symmetries of the solution. In a previous
paper [5] we considered reflectional symmetries but in this paper, we consider symmetries which are associated
with spatial periodicity.

Spatially periodic boundary conditions are often imposed on solutions of PDEs. This has the advantage of reducing
an infinite spatial domain to a finite one. However, when considering the stability of such solutions, it is important
to consider the effect of subharmonic perturbations which are periodic, but which have a longer period than that of
the solution itself. One example of this occurs in the Kuramoto–Sivashinsky equation in which there is a non-trivial
branch of steady state solutions which bifurcates from the trivial solution. There are solutions on this branch which
are stable with respect to periodic perturbations whose period isany integer multiple of the period of the solution
(see the numerical results in [11]) and so we would expect this solution to be observed in the physical systems
modelled by the Kuramoto–Sivashinsky equation.

In a previous paper [5] we investigated chaotic solutions of the complex Ginzburg–Landau (CGL) equation

At = RA + (1 + iν)∇2A − (1 + iµ)A|A|2, x ∈ [0, 2π) (1.1)

with A ∈ C andR, ν, µ ∈ R that possessed various reflectional symmetries, concentrating on their stability with
respect to perturbations without these symmetries. We found that for most parameter values, chaotic solutions that
were restricted to lie within symmetric subspaces were unstable with respect to perturbations out of these subspaces.
However, we did find a small region of parameter space in which there were solutions that were even about some
point in the domain [0, 2π) and were stable with respect to odd perturbations.

In this paper we continue the investigation, but consider solutions that have a spatial periodL and investigate
their stability with respect to perturbations that have spatial periodkL for some integerk > 1, i.e.spatial period
increasingor subharmonicperturbations. (Note that this is quite different from the ideas of period-doubling or
multiplying that have gained much attention in the past 20 years — these refer to an increase in thetemporalperiod
of oscillation by a factor of 2 or more.)

A seminal paper of Benjamin and Feir [6] first considered the stability of travelling periodic water waves to
side-band perturbations which have period much longer than that of the solution, but are not restricted to an
integer multiple of the period of the solution. Subharmonic perturbations for water waves were later considered by
Longuet–Higgins [12]. Bifurcations associated with subharmonic perturbations for the water wave problem were
considered by Saffman [14] and Aston [2].

In 1983, Yamada and Fujisaka [16] considered the problem of determining the stability of spatially uniform
chaotic solutions of a PDE with respect to perturbations which are not spatially uniform. They performed a finite
difference discretisation of the PDE which gave a finite-dimensional system of coupled oscillators. The uniform
state for the PDE corresponded to the synchronised state for the coupled oscillators. They showed how Lyapunov
exponents could be used to determine stability of the synchronised state. However, their numerical results were
confined to two coupled Lorenz systems. Since that time, there has been much interest in synchronisation problems
for low-dimensional dynamical systems but very little progress has made in the study of PDEs. Recently, Fujisaka
et al. [9] have returned to the problem of stability of spatially uniform but chaotic solutions of PDEs. This is
analogous in some ways to determining bifurcations from a trivial (i.e. spatially uniform) solution. The work that
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we have done is to take this process further by considering bifurcations from non-trivial (i.e. spatially non-uniform)
solutions.

The CGL equation plays the role of a model partial differential equation to which we apply these ideas. However,
this approach is of course very general and can be applied to a wide range of partial differential equations. Also,
this approach can easily be generalised to higher spatial dimensions.

In Section 2, we describe the symmetries of the CGL equation and our approach to determining stability of these
solutions by computing dominant Lyapunov exponents which are associated with particular isotypic components
of the function space. We concentrate on spatial period doubling and tripling in Section 3 and show how these ideas
generalise to larger period perturbations. Numerical results are presented in Section 4 while the significance of these
results is discussed in Section 5.

2. Symmetry and bifurcation

We briefly review our approach to dealing with symmetry breaking bifurcations in chaotic systems with symmetry
for the sake of completeness. For more details, see [4,5].

We consider a general evolution equation of the form

At = g(A), g : X → X, (2.1)

whereg is assumed to be a nonlinear operator involving spatial derivatives andX is an appropriate Hilbert space
which incorporates the boundary conditions. We also assume thatg satisfies the equivariance condition

γg(A) = g(γA) for all γ ∈ 0, (2.2)

where0 is a compact Lie group. For any subgroup6 of 0, we define the fixed point space

Fix(6) = {A ∈ X : σA = A for all σ ∈ 6}

and it is easily verified that

g : Fix(6) → Fix(6)

for all subgroups6 of 0 so that the fixed point spaces are invariant under the flow of the nonlinear equation (2.1).
For each subgroup6 of 0, there is a unique6-isotypic decomposition of the spaceX given by

X =
∑

k

⊕ Wk,

where each isotypic componentWk is the sum of irreducible subspaces which are associated with one of the
irreducible representations of6. If there is a solutionA(t) ∈ Fix(6) of (2.1), then the6-isotypic components are
invariant under the linearisation ofg aboutA(t), i.e.

gA(A(t)) : Wk → Wk

and so there is a block diagonal structure to the linear operatorgA(A(t)). Since this linear operator is involved
in the variational equation which is used to compute Lyapunov exponents, we can associate Lyapunov exponents



82 P.J. Aston, C.R. Laing / Physica D 135 (2000) 79–97

with a particular isotypic component. There are two important consequences of this decomposition which are as
follows:
1. the Lyapunov exponents can be calculated for perturbations in each of the isotypic components

independently;
2. the motion in Fix(6) will be stable if the dominant Lyapunov exponent associated with each of the isotypic

components other than the trivial one (which is Fix(6)) are negative.
We apply these ideas to the CGL equation (1.1) which has a number of symmetries given by

θA(x, t) = eiθ A(x, t), θ ∈ [0, 2π),

rαA(x, t) = A(x + α, t), α ∈ [0, 2π),

τβA(x, t) = A(x, t + β), β ∈ R,

s1A(x, t) = A(−x, t),

corresponding to, respectively, a rotation of the complex amplitude, space translation, time translation and a spatial
reflection. We note that a special case of the rotation occurs whenθ = π and this gives another symmetry of order
two. As in [5], we define

s2A(x, t) := πA(x, t) = −A(x, t).

As we are interested in spatial period increasing bifurcations, we consider the CGL equation on the spatial domain
[0, 2π ] together with periodic boundary conditions but we consider solutions with period 2π/n for some integer
n > 1. Thus, perturbations with period 2π , the domain length, represent an increase in the period by a factor ofn.
Clearly such solutions are invariant under a spatial translation of their period 2π/n and so are contained in Fix(Zn),
whereZn is the cyclic group of ordern generated byr2π/n. We will also consider solutions which have in addition
some reflectional symmetries.

We noted in [5] that solutions of the CGL equation usually have three zero Lyapunov exponents. However, these
are all associated with isotypic components which do not involve an increase in the period and so are not relevant
in this context.

3. Period increasing bifurcations

We consider solutions with period 2π/n for particular values ofn. We will concentrate on the values ofn = 2
andn = 3 since then the generalisation to higher values ofn will be obvious.

3.1. Spatial period doubling (n = 2)

Whenn = 2, the solutions that we are interested in have spatial periodπ and so are fixed by the action ofrπ . If the
solutions have no other symmetries then they are contained in Fix(Z2). The corresponding isotypic decomposition
is simply

X = W1 ⊕ W2

where

W1 = {A ∈ X : rπA = A} = Fix(Z2),
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W2 = {A ∈ X : rπA = −A}.
The Fourier decompositions of solutions inW1 andW2 are

A(x, t) ∈ W1 ⇒ A(x, t) = b0(t)

2
+

∞∑
k=1

{bk(t) cos 2kx + ck(t) sin 2kx}

+i

[
d0(t)

2
+

∞∑
k=1

{dk(t) cos 2kx + ek(t) sin 2kx}
]

,

A(x, t) ∈ W2 ⇒ A(x, t) =
∞∑

k=1

{bk(t) cos(2k − 1)x + ck(t) sin(2k − 1)x}

+i
∞∑

k=1

{dk(t) cos(2k − 1)x + ek(t) sin(2k − 1)x}.

In this case, the solution with periodπ will be stable with respect to perturbations of period 2π if the dominant
Lyapunov exponent associated with perturbations inW2 is negative and unstable otherwise.

If we have solutions which have periodπ and in addition are even functions ofx, then the solutions can be found
by solving forA on the interval [0, π/2] with homogeneous Neumann boundary conditions and are contained in
Fix(61) where

61 = {I, rπ , s1, rπ s1},
which is isomorphic toZ2 × Z2 as rπ ands1 are both generators forZ2. This group has four one-dimensional
irreducible representations, corresponding to the four possible combinations ofrπ ands1 being±I , and there are
four corresponding isotypic components given by

W1 = {A ∈ X : Ax(0, t) = 0 and Ax(π/2, t) = 0} = Fix(61),

W2 = {A ∈ X : A(0, t) = 0 and A(π/2, t) = 0},
W3 = {A ∈ X : Ax(0, t) = 0 and A(π/2, t) = 0},
W4 = {A ∈ X : A(0, t) = 0 and Ax(π/2, t) = 0}.

We note that functions in each isotypic decomposition can be distinguished by different boundary conditions. This
observation has been exploited numerically in bifurcation problems in [3].

By expandingA(x, t) as a Fourier series it is easy to see which modes occur in each isotypic component. Thus,

A(x, t) ∈ W1 ⇒ A(x, t) = b0(t)

2
+

∞∑
k=1

bk(t) cos 2kx + i

[
c0(t)

2
+

∞∑
k=1

ck(t) cos 2kx

]
,

A(x, t) ∈ W2 ⇒ A(x, t) =
∞∑

k=1

bk(t) sin 2kx + i
∞∑

k=1

ck(t) sin 2kx,

A(x, t) ∈ W3 ⇒ A(x, t) =
∞∑

k=1

bk(t) cos(2k − 1)x + i
∞∑

k=1

ck(t) cos(2k − 1)x,

A(x, t) ∈ W4 ⇒ A(x, t) =
∞∑

k=1

bk(t) sin(2k − 1)x + i
∞∑

k=1

ck(t) sin(2k − 1)x.
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We investigate solutions in Fix(61), and since we are interested in period-increasing instabilities we only calculate
the dominant Lyapunov exponents associated withW3 andW4 (on whichrπ acts as−I ) and not that associated
with W2 (on whichrπ acts as the identity).

It is also possible to consider solutions with periodπ which are odd functions ofx. However, this is very similar
to the previous case in that the symmetry of the solutions is again isomorphic toZ2 × Z2 and so we do not consider
this case in detail.

The other combination of reflectional symmetries, which we considered in [5], is when solutions are even about
one point and odd about another. In particular, we consider solutions with a spatial period ofπ which are even about
the origin and odd aboutπ/4. To help in the following discussion, we define

ηA(x, t) := s2s1rπ/2A(x, t) = −A(π/2 − x, t).

If A(x, t) is fixed byη then it is odd aboutπ/4. Thus, the group of symmetries of these solutions includess1 (even
about the origin),η (odd aboutπ/4) andrπ (periodπ ).

DefiningR := ηs1 we see that this group, which we call62, is generated byR ands1 which satisfy

R4 = I, s2
1 = I, s1R = R−1s1,

and so is isomorphic toD4. We note thatη = Rs1 and rπ = R2. There are four one-dimensional irreducible
representations ofD4 given by

R = I, s1 = I,

R = −I, s1 = I,

R = I, s1 = −I,

R = −I, s1 = −I,

but sincerπ = R2 = I for all of these, perturbations in the corresponding isotypic components are not useful
when considering spatial period doubling. Indeed, these represent different combinations of reflectional symmetries
being broken which preserve the period, which we considered in [5]. There is also one two-dimensional irreducible
representation ofD4 given by

R =
[

cosπ/2 − sinπ/2
sinπ/2 cosπ/2

]
=

[
0 −1
1 0

]
and s1 =

[
1 0
0 −1

]
.

For this representation

rπ = R2 =
[ −1 0

0 −1

]
,

and so all perturbations in the corresponding isotypic component have minimal period 2π and so are spatially period
doubling.

We note that since this two-dimensional irreducible representation is also absolutely irreducible, the linear operator
gA(A) can be decomposed further into two identical blocks associated with the spaces on whichs1 acts asI or −I .
This results in Lyapunov exponents of multiplicity two. Moreover, numerically it is sufficient to work with only
one of these two identical blocks in order to find just one of the Lyapunov exponents. See [4] for more details. By
choosing the block associated with the space on whichs1 = I , we have a Fourier decomposition of the perturbation
in this case given by

A(x, t) =
∞∑

k=1

bk(t) cos(2k − 1)x + i
∞∑

k=1

ck(t) cos(2k − 1)x.
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The alternative choice of perturbation which gives the second identical Lyapunov exponent consists of replacing
the cosines with sines.

Stability of the chaotic solution with respect to period-doubling perturbations is determined by the sign of the
dominant Lyapunov exponent associated with this type of perturbation.

3.2. Spatial period tripling (n = 3)

Whenn = 3, solutions have spatial period 2π/3 and so are fixed by the action ofr2π/3. For ease of notation, we
defineω = 2π/3. If the solutions have no other symmetries, then they are contained in Fix(Z3). There are only two
irreducible representations ofZ3 which are given by

rω = I, rω =
[

cosω − sinω

sinω cosω

]
.

The corresponding isotypic decomposition is

X = W1 ⊕ W2,

whereW1 = Fix(Z3). Since the two-dimensional irreducible representation is not absolutely irreducible, there is
no further decomposition of the linear operatorgA(A) into two diagonal blocks, as occurred in the previous section
with the groupD4. However, it does have a complex structure [15] in that

gA(A)|W2 =
[

C −D

D C

]
,

for some matricesC andD. This implies that if there is a solutionφ = [u, v]T of the variational equation

φ̇ = gA(A)|W2φ, (3.1)

then there is also another distinct solution of (3.1) given byφ = [−v, u]T. Thus the Lyapunov exponents are again
of multiplicity two in this case.

The solution with spatial period 2π/3 will be stable to perturbations of period 2π if the (multiple) dominant
Lyapunov exponents associated with the isotypic componentW2 are negative.

We now consider solutions which have some reflectional symmetries and have period 2π/3. If solutions are
also even about the origin, then the solutions have symmetry group which we call63 generated byrω and s1

and so is isomorphic to the dihedral groupD3. This group has two one-dimensional irreducible representations
rω = I, s1 = I andrω = I, s1 = −I , and one two-dimensional representation

rω =
(

cosω − sinω

sinω cosω

)
= 1

2

( −1 −√
3√

3 −1

)
and s1 =

(
1 0
0 −1

)
.

In a similar way to theD4 case above,rω acts as the identity for the one-dimensional irreducible representations
and so perturbations in the corresponding isotypic components have the same period as the solution. Thus, only the
two-dimensional irreducible representation is of interest and since it is also absolutely irreducible, the Lyapunov
exponents associated with the corresponding isotypic component will have multiplicity two. Again numerically it
is sufficient to consider only perturbations for whichs1 = I .

The theory is again similar for solutions which have spatial period 2π/3 and are odd about the origin.
Finally, we consider solutions which are even about the origin, odd aboutπ/6 and have period 2π/3. It is helpful

to define

βA(x, t) := s2s1rπ/3A(x, t) = −A(π/3 − x, t),



86 P.J. Aston, C.R. Laing / Physica D 135 (2000) 79–97

Fig. 1. Dominant Lyapunov exponents for a solution with periodπ (solid) and perturbations of period 2π (dashed). Parameter values:
ν = 1.9, µ = −4.

since functions fixed byβ are odd aboutπ/6. The symmetry group64 of these solutions thus includess1 (even
about the origin),β (odd aboutπ/6) andrω (period 2π/3).

Definingρ := βs1, we find that64 is generated byρ ands1 which satisfy

s2
1 = I, ρ6 = I, s1ρ = ρ−1s1,

and so it is isomorphic toD6. We note thatβ = ρs1 andrω = ρ2. Now D6 has four one-dimensional irreducible
representations, corresponding to the four combinations ofρ ands1 being±I , and two two-dimensional irreducible
representations given by

ρ =
[

cosω/2 − sinω/2
sinω/2 cosω/2

]
= 1

2

[
1

√
3

−√
3 1

]
and s1 =

[
1 0
0 −1

]
, (3.2)

and

ρ =
[

cosω − sinω

sinω cosω

]
= 1

2

[ −1 −√
3√

3 −1

]
and s1 =

[
1 0
0 −1

]
(3.3)

For all of the one-dimensional irreducible representations,

rω = ρ2 = I,

so these isotypic components are not of use for studying period-tripling instabilities. However,rω does not act
trivially for either of the two-dimensional representations and so these are relevant. We note that for the underlying
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Fig. 3. Dominant Lyapunov exponents for a solution in Fix(61) (top) and perturbations inW3 (middle) andW4 (bottom). Parameter values:
R = 4.2, µ = −4.

solution to be stable with respect to period-increasing perturbations, the dominant Lyapunov exponents associated
with boththe two-dimensional irreducible representations must be negative.

3.3. Higher values ofn

By considering the cases ofn = 2 andn = 3, the pattern for higher values ofn can clearly be seen. Depending
on the reflectional symmetries of the solutions, there are three basic cases to consider for eachn:
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Fig. 5. Bursting behaviour after the blowout bifurcation. The vertical axis is a measure of the distance from the subspaceA(x, t) = A(x + π, t).
See text for more details. Parameter values:R = 4.2, µ = −4, ν = 2.1667.

1. If the solution has no reflectional symmetries, then the solution is fixed only byr2π/n and so the group isZn.
2. If the solution is either even or odd, then there is an additional reflectional symmetry so the group isDn.
3. If the solution is even about the origin and odd aboutπ/(2n), then the group isD2n.

Since all the dihedral and cyclic groups only have one-and two-dimensional irreducible representations, the methods
used here are easily extended to higher values ofn.

4. Numerical results

In this section we describe some numerical results relating to the theory presented above. The results are obtained
using a pseudo–spectral method as described in [5].

4.1. Periodπ solutions

Solutions with periodπ and no reflectional symmetries were computed together with the dominant Lyapunov
exponents associated with the two isotypic components as a function ofR for ν = 1.9 andµ = −4. Since
W1 = Fix(Z2), a positive dominant Lyapunov exponent in this case indicates a chaotic solution. As there are always
three zero Lyapunov exponents associated with the motion in Fix(Z2) [5] then the dominant Lyapunov exponent
associated with non-chaotic motion is always zero. The stability of this solution to period-doubling perturbations
is determined by the dominant Lyapunov exponent associated withW2. Numerical results are shown in Fig. 1. We
see that for these parameter values there are intervals in which the solution is chaotic and stable to perturbations of
period 2π (which we discuss below), periodic or quasiperiodic and unstable with respect to perturbations of period
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Fig. 7. Dominant Lyapunov exponents for a solution with spatial periodπ , even about the origin and odd aboutπ/4 (solid), and for perturbations
with spatial period 2π (dashed). Note that the Lyapunov exponent for perturbations has multiplicity 2. Parameter values:µ = −4, ν = 2.

2π , and chaotic and unstable with respect to perturbations of period 2π . A typical example of a chaotic solution
that is unstable to perturbations of period 2π is shown in Fig. 2 as a contour plot. Note that only the real part of the
solution is shown. A plot of the imaginary part of the solution is similar.

It was found that the chaotic solutions that are stable with respect to perturbations of period 2π in the interval
containingR = 4 in Fig. 1 not only have periodπ but are also even about some point in [0, π/2), i.e. they are
conjugate to a solution in Fix(61) via a spatial translation. Thus, we computed these solutions in Fix(61) together
with the two dominant Lyapunov exponents associated with the61-isotypic componentsW3 andW4. These are
shown in Fig. 3 as a function ofν for R = 4.2 andµ = −4. We see that forν between 1.9 and approximately 2.15
the solution in Fix(61) is chaotic and stable with respect to perturbations of period 2π . A chaotic solution with
period 2π settling down to periodπ and even about some point is shown in Fig. 4, corresponding toν = 1.9.

We see from Fig. 3 that asν increases the solution in Fix(61) becomes unstable to perturbations of period 2π

while remaining chaotic. This is known as ablowout bifurcation[7,13] and has been studied widely in systems of
coupled chaotic oscillators. Blowout bifurcations can be classified as eithersubcriticalorsupercritical[1]. The main
difference is that for a subcritical bifurcation there areriddled basinsof attraction before the bifurcation (when the
normal Lyapunov exponent is negative) while for a supercritical bifurcation there ison–off intermittencyafter the
bifurcation, where the attractor spends long periods close to the submanifold that was stable before the bifurcation
with occasional “bursts” away from it.

The blowout bifurcation of Fig. 3 seems to be supercritical, as we see bursting behaviour at parameter values
close to the bifurcation which is very similar to the on–off intermittency seen in many other examples of blowout
bifurcations in low dimensional systems. In Fig. 5 we choose the parameter valuesR = 4.2, µ = −4, ν = 2.1667
and plot the norm of the vector formed from the odd-numbered Fourier coefficients in the spectral representation
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Fig. 9. Dominant Lyapunov exponents for a solution with spatial period 2π/3 (lower) and perturbations with spatial period 2π (upper). Parameter
values:R = 45,ν = 2.6.

of the solution as a function of time. The norm is zero if and only if the solution satisfiesA(x, t) = A(x + π, t).
The initial condition was randomly chosen and had spatial period 2π . Thus, for long periods of time, the chaotic
motion appears to be even with periodπ while there are occasional bursts where the period is 2π .

We should also note that the blowout bifurcation does not occur at a particular parameter value but over a range
of values. This is typical for a system in which the parameter we vary isnon-normal[1,7]. (A non-normal parameter
is one for which not only the dynamics normal to the invariant subspace change as we vary the parameter, but also
the dynamics restricted to the invariant subspace.)

The discovery of this blowout bifurcation is significant in that we believe it to be the first example of asubhar-
monic blowout bifurcationfrom an underlying spatio-temporally chaotic solution. Covas et al. [7] found a blowout
bifurcation in a PDE describing the dynamics of a mean field dynamo model, but in that case the instability acted
to break a reflectional symmetry. Fujisaka et al. [9] examined the stability of the spatially uniform solution of
three PDEs with respect to spatially inhomogeneous perturbations and found on–off intermittency associated with
blowout bifurcations. The advantage of examining the spatially uniform state is that an expression for the dominant
normal Lyapunov exponent can then sometimes be explicitly derived.

The other curious feature of Fig. 3 is that the dominant Lyapunov exponents associated with the isotypic com-
ponentsW3 andW4 are very similar. In theory these quantities are completely independent and so this similarity is
somewhat surprising. We have investigated the solution to see whether it has any extra symmetries which we were
not expecting and found none. Thus, we are unable to explain why these Lyapunov exponents are so similar.

The final observation for this example is that the dominant Lyapunov exponent associated with perturbations in
W2 is always zero indicating that the solution is stable with respect to these perturbations also. These perturbations
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Fig. 11. Dominant Lyapunov exponents for a solution with spatial wavelength 2π/3 that is even about the origin (lower) and for perturbations
with spatial period 2π (upper). Note that this Lyapunov exponent has multiplicity 2. Parameter values:µ = −4, ν = 2.

are odd with periodπ and there is always a zero Lyapunov exponent associated with these perturbations as explained
in [5]. Thus, within the space of 2π periodic functions, this chaotic solution which is even and has periodπ is stable
with respect to all possible symmetry breaking perturbations.

A chaotic solution in Fix(61) with spatial periodπ and homogeneous Neumann boundary conditions that is
unstable with respect to perturbations of spatial period 2π , i.e. after the blowout bifurcation, is shown in Fig. 6. A
small perturbation with spatial period 2π is added att = 10 and the symmetry of the solution is quickly lost as
expected. The parameter values areR = 4.2, µ = −4 andν = 2.8.

Finally, we consider solutions in Fix(62) which have spatial periodπ , are even about the origin and are odd about
π/4. Recall that in this case we are only interested in the Lyapunov exponents of multiplicity two associated with
the two-dimensional irreducible representation of62. In Fig. 7 these dominant Lyapunov exponents are shown. We
see that over the parameter range shown, the underlying solution changes from periodic or quasiperiodic to chaotic
and back again but is always unstable with respect to perturbations of period 2π . We give an example of such an
unstable chaotic solution in Fig. 8. A small perturbation with spatial period 2π is added to the solution att = 0.3.
The parameter values areR = 62,µ = −4, ν = 2.

4.2. Period2π/3 solutions

In order to investigate the effect of perturbations three times the period of the solution, we computed solutions
with period 2π/3, initially with no other symmetries imposed. The dominant Lyapunov exponents associated with
the two-dimensional irreducible representation ofZ3 are shown in Fig. 9. This shows a transition to chaos before
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Fig. 13. Dominant Lyapunov exponents for a solution in Fix(64) (lower) and perturbations corresponding to one two-dimensional irreducible
representation (Eq. (3.2) in Section 3.2, dashed) and the other (Eq. (3.3), top solid). Parameter values:R = 80,ν = 2.

and after which the solution is unstable with respect to perturbations of period 2π . An example of an unstable
chaotic solution corresponding to this parameter range is shown in Fig. 10. Note that at approximatelyt = 1.25,
the solution almost hasD3 symmetry but then all symmetry is soon quickly lost after this point.

We next consider solutions in Fix(63) which have spatial period 2π/3 and are also even about the origin. Again,
we only consider the dominant (multiple) Lyapunov exponents associated with the two-dimensional irreducible
representation which are shown in Fig. 11 as a function ofR for µ = −4 andν = 2. We see that for this range of
parameters the underlying solution is either periodic, quasiperiodic, or chaotic, but is always unstable with respect
to perturbations of period 2π . We show an example of such an unstable chaotic solution in Fig. 12 for parameter
valuesR = 9, µ = −4 andν = 2.

We note that by rescaling the spatial scale, the solutions which we found to be stable with respect to pertur-
bations of period twice that of the solution are unstable with respect to perturbations with period three times
that of the solution and so would not expect to see this solution occurring starting with an arbitrary initial
condition.

Finally, we consider solutions in Fix(64) and compute the dominant Lyapunov exponents associated with per-
turbations corresponding to the two two-dimensional irreducible representations of64 as a function ofµ for
R = 80, ν = 2. These results are shown in Fig. 13. We see for these parameter values that asµ is varied the
solution in Fix(64) changes from periodic or quasiperiodic to chaotic but remains unstable with respect to both
types of perturbation. An example of a chaotic solution from the parameter range shown in Fig. 13 is presented in
Fig. 14.



96 P.J. Aston, C.R. Laing / Physica D 135 (2000) 79–97

Fig. 14. A chaotic solution in Fix(64) that is unstable with respect to perturbations of period 2π . A small perturbation with spatial period 2π is
added att = 0.2. Parameter values:R = 80,µ = −11,ν = 2. Compare with Fig. 13.

5. Conclusion and discussion

In this paper we have extended the ideas in [5], regarding chaotic solutions with reflectional symmetries of the
complex Ginzburg–Landau equation and their stability with respect to reflectional symmetry-breaking perturbations,
to the study of the stability of such solutions with respect to subharmonic perturbations having longer spatial
wavelengths than the underlying solution.

Many solutions, as expected, are unstable with respect to subharmonic perturbations. This indicates that the
degree of self-organisation of chaotic solutions is very small compared with that for steady state and time periodic
solutions. Indeed, the prospect of finding a spatio-temporal chaotic solution which is spatially periodic and stable
with respect toall possible period-increasing perturbations is very unlikely. However, we did find spatially periodic
solutions which have period half that of the specified period of the solutions and so the imposition of periodic
boundary conditions does not necessarily imply that the chaotic solutions will have the same period.

Thus, we conclude that spatially periodic chaotic solutions are only found numerically because these conditions are
imposed on them. We would not expect to see such solutions forming starting with an arbitrary, non-periodic initial
condition. Thus, we conclude that while periodic boundary conditions are often mathematically very convenient,
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they are not necessarily physically relevant for chaotic solutions.
Homogeneous Neumann boundary conditions are often physically relevant and while the application of these

boundary conditions would appear to restrict the symmetry of the problem it is well known that this problem can
be embedded in the periodic problem which has much more symmetry [2,8]. In this case, if we apply Neumann
boundary conditions atx = 0 andx = π , then the solutions that we found in Fix(61) also haveAx(π/2, t) = 0
and are invariant under a reflection aboutx = π/2 and so satisfy

A(x, t) = A(π − x, t)

for all t . Moreover, these solutions are stable to perturbations which break this reflectional symmetry and so there
is a degree of self-organisation in the solutions as they have a stable symmetric solution.

We have also found that this solution, whether regarded as a solution of the periodic problem or the Neumann
problem, undergoes a supercritical blowout bifurcation. For the Neumann problem, this involves breaking only
a reflectional symmetry of the solution while for the periodic problem, this is equivalent to a period-increasing
bifurcation. We believe this to be the first observation of a subharmonic blowout bifurcation from a chaotic solution
of a PDE.

For solutions with spatial period 2π/3 and varying amounts of symmetry we found that chaotic solutions are
always unstable with respect to perturbations of period 2π .
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