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CHAPTER 1

GHOSTBURSTING:
THE ROLE OF ACTIVE DENDRITES IN
ELECTROSENSORY PROCESSING
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We give an overview of “ghostbursting”, a novel type of bursting ob-
served in sensory processing neurons of weakly electric fish. We discuss
the steps taken to understand the bursting mechanism, including experi-
mental manipulations and the development of multi-compartmental and
minimal neuron models. Using dynamical systems theory, we emphasise
the main differences between this type of bursting and other previous
models. We finally review results showing how electrosensory neurons
can process different components of dynamic stimuli in parallel with
both bursts and isolated spikes.

1. Introduction

Weakly electric fish are nocturnal fresh water animals that thrive in South
America and Africa. Over 60 million years they have developed a unique
sensory modality — an electrosense. These fish have an electric organ that
generates a weak, quasi-sinusoidal electric field. Prey, the fish’s environ-
ment, and even communication calls from con-specifics modulate the ampli-
tude of this field. The electrosensory system of the fish detects and processes
these modulations to give a neural reconstruction of their environment!-2.
The ability to use naturalistic dynamic inputs, and the existence of well-

2Current address: Center for Neural Science, 4 Washington Place, New York, NY 10003.
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charted neural feedback pathways and well-characterized single neurons,
have recently made weakly electric fish a popular animal in the study of
neurocomputational dynamics and processing®.

Electrosensory inputs are faithfully coded by electroreceptors that
densely cover the surface of the animal’s body®. These receptors project
to a dense layer of pyramidal cells in the electrosensory lateral line lobe
(ELL) of the fish brain. These cells are the principal output cells within the
ELL and they are devoted to the processing of a variety of sensory inputs.
The single cell dynamics of these cells exhibit a form of burst discharge
termed “ghostbursting”®789 Bursting behaviour is found in a multitude
of sensory cells?; however, the ELL and ghostbursting offer distinct advan-
tages for the study of bursting and sensory coding. ELL pyramidal cells are
only one synapse from the outside world — an outside world that is simply
describable in terms of electric field modulations rather than complex visual
or olfactory scenes. Feedback from higher brain centers is segregated and is
known to contextually modulate pyramidal cell spiking behaviouri®!!, Fi-
nally, the burst discharge is dependent on active dendritic processes® which
offers several methods for modulation of burst behaviour!?:13,

In this chapter we review a host of experimental, computational, and
theoretical results of ELL pyramidal cell burst discharge. We first present
the core burst mechanism and relate it to experimental and computational
results. Next we present several reduced mathematical descriptions of the
burst mechanism occurring in ELL pyramidal cells, which are useful for
gaining an understanding of the mechanism from the point of view of dy-
namical systems theory. A comparison between ghostbursting and more
classical burst mechanisms will show that ghostbursting has some unique
properties. The final section of this review outlines recent results detailing
how ELL pyramidal cells use their burst mechanism to differentially code
low and high frequency inputs.

2. Bursting Mechanism

In the early 1990s, R. W. Turner and L. Maler observed a novel form of
burst discharge from ELL pyramidal cells in brain slices of the electric fish
Apteronotus leptorhynchus®. These observations were of a repetitive and
high frequency burst discharge in response to a constant current injection;
see Fig. 1 for an example recording. The bursts were observed to have a
monotonic increase in instantaneous frequency through the burst (i.e. the
time between successive action potentials monotonically decreases during



October 1, 2004 14:21 WSPC/Trim Size: 9in x 6in for Review Volume chapterC

Ghostbursting: the role of active dendrites in electrosensory processing 3

soma

50 ms

10 mV

L

dendrite

M_@r,w

10 ms

10 mV

L

20 ms

Fig. 1. Ghostbursting in ELL pyramidal cells. Somatic and dendritic membrane po-
tentials recorded from an in vitro ELL slice preparation. A constant depolarizing input
current was applied to elicit the action potential trains shown in both the somatic and
dendritic spike sequences. The expanded portion of the somatic potential shows the de-
polarizing after-potential (DAP) that occurs shortly after a somatic action potential. The
dendritic potential clearly shows the failure of action potential backpropagation after a
high frequency somatic spike discharge. This dendritic failure causes a large hyperpolar-
ization at the soma, signalling a burst termination. Note that the somatic and dendritic
potentials should not be directly compared since they are recorded from different cells.
Data provided by Anne-Marie Oswald. At top left is a confocal image of a Lucifer-yellow
filled ELL basilar pyramidal cell.

a burst). This study was also one of the first to determine that there were
active sodium channels in the neuron’s dendrite, and that their presence
was necessary for bursting to occur. Burst mechanisms dependent on active
dendpritic processes are now quite familiar occurring in varied forms and in
diverse systems*14.

Further experimental work®:? determined that the acceleration of action
potentials (APs) during a burst was due to a gradual broadening of the
dendritic APs. Because the somatic APs are narrower than the dendritic,

current flows from the dendrite to the soma immediately after the somatic
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AP, giving rise to a depolarising after potential (DAP). The broadening of
the dendritic APs causes an increase in the size of the DAPs, which results
in the acceleration. This acceleration continues until the soma fires two
successive APs whose separation in time is less than the refractory period
of the dendrite. The dendrite then fails to respond to the second of these
APs, the DAP does not appear, and the burst is terminated with a large
after-hyperpolarization.

The experimentally-determined aspects of the bursting were success-
fully modelled by Doiron et al.®, who constructed and studied a detailed
multi-compartmental model of an ELL pyramidal cell. Using measurements
and estimates of ion channel densities and parameters, these authors used
this model to reproduce realistic APs, different AP refractory periods, and
a DAP at the soma. However, it did not reproduce bursting without the in-
troduction of cumulative inactivation of dendritic potassium. The necessity
for this assumption will be clear once the ghostburster system is introduced
and analysed.

The biophysically-based compartmental model successfully reproduced
the bursting seen in wvitro but, being very detailed, was slow to simulate.
Also, it was not clear which aspects of the model were essential for burst-
ing to occur, although it was clear that some components were necessary.
Because of this, the authors developed a much simpler model”. This sim-
pler model was produced by lumping all of the compartments representing
the neuron’s dendrite together (there were over 300 compartments repre-
senting the dendrite in the model of Doiron et al.®), and by not including
ion channels whose dynamics were not thought to be essential for burst-
ing. The result was a model comprising two compartments (the soma and
the dendrite) coupled by a resistance, and described by the following six
differential equations:
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Subscripts s and d refer to somatic and dendritic variables, respec-
tively. Equations (1) and (3) are current balance equations for the soma
and dendrite of the neuron, respectively, and the other equations govern
the ion channel dynamics. The variables m and h are activation and in-
activation of Nat, respectively, and n and p are activation and inactiva-

tion of KT, respectively. Parameter values are C = 1uF/cm?, 1, = 5,
9INa,s = 55, VNa, = 40, 9dr,s = 20, VK = —88.5, agrL = 0.18, VL = —70,
g = 1, K = 04, gna,a = 3, gar,a = 15, where voltages are measured

in mV, time in ms, and conductances in mS/cm?. I is the somatic input
current, g. is the coupling conductance, and x is the ratio of the somatic
area to the total area of the cell. Other functions are mq (V) = 1/[1 +
exp (—(V +40)/3)], noo,s(V) = 1/[1 + exp (—(V +40)/3)], Meo,a(V) =
1/[1+exp (—(V +40)/5)], hoo,a(V) = 1/[1 +exp (V + 52)/5)], o,a(V) =
1/[14exp (—(V +40)/5)], poo,a(V) = 1/[1+exp ((V + 65)/6)]. These func-
tions and parameter values are the same as those used in the multi-
compartmental model previously discussed®. Note that the time constant
for hq is 1 ms, so p, is the slowest variable by a factor of 5.

Behaviour of the ghostburster model (1)-(6) is shown in Fig. 2; for com-
parative purposes bursts from both experimental data and the large multi-
compartmental model are also shown.

We will now describe the bursting in detail, referring to the model (1)-
(6) and its behaviour as seen in Fig. 2B. The presence of both sodium and
potassium channels in the soma and the dendrite make both capable of
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Fig. 2. Ghostbursting in data and models. A. Typical somatic bursts in experimentally-
observed data (left), the large compartmental model® (middle), and the model (1)-(6)
for I = 9 (right). The bursts all terminate with a fast “doublet” event. The gradual
potentiation of DAPs is visible during the evolution of a burst. B. Simulations of (1)-
(6) with I = 9. Top: Vi (somatic voltage). Middle: V; (dendritic voltage). Bottom: py
(inactivation of dendritic potassium). Note the rapid reset of p; in between bursts.

generating action potentials and somatic DAPs as discussed above. During
a burst the variable representing the cumulative inactivation of dendritic
potassium, pg, slowly decreases. This directly causes the dendritic APs to
broaden, as it is associated with the flow of repolarizing potassium ions.
This causes the DAPs to slowly grow in magnitude, which in turn accel-
erates the rate of production of APs in the soma. This acceleration occurs
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until the soma fires two APs (a “doublet”) that are so close together that
the dendrite can respond to only the first of this pair, as the second occurs
within the refractory period of the dendrite. This failure of the dendrite to
respond to the second AP in the doublet (seen as a drop in AP amplitude
in the middle panel of Fig. 2B) eliminates the current that would normally
flow from the dendrite to the soma, and thus the DAP. There is then a
relatively long wait until the soma fires again, of its own accord. During
this gap (the “inter-burst interval”) pg recovers to its value near the start of
a burst and the process starts again. While there is no direct experimental
evidence for a pg-like variable in ELL pyramidal cells, it was included in the
models as the most plausible mechanism for causing the slowly broadening
dendritic APs during a burst. Frequency-dependent spike broadening re-
sulting from potassium inactivation has been shown in several invertebrate
systems!®:16,

Now that a reduced two-compartment description of ELL pyramidal
cell behaviour is available, a more mathematical understanding of ELL
burst discharge is possible. This will allow for a better comparison between
ghostbursting and other more traditional types of bursting. This is the focus
of the next section.

3. Ghostburster Dynamics

A bifurcation analysis of the full system (1)-(6) using the injected current
I as a parameter was presented in Doiron et al.”, and a similar diagram
is shown in Fig. 3. For small enough I, the system is quiescent. As I is
increased, there is a saddle-node bifurcation of fixed points on an invariant
circle, leading to periodic firing. This bifurcation is seen in a number of
other model neurons'”'®. As the current is increased further, there is a
saddle-node bifurcation of limit cycles, and the system starts bursting. The
bifurcation diagram suggests that for some values of I, this bursting is
chaotic'®. This chaotic nature was shown by Doiron et al.”, where the most
positive Lyapunov exponent of (1)-(6) was calculated as a function of I.
Intervals of I for which this exponent was positive were found, indicating
that the dynamics were chaotic. Note that the chaotic nature implies that
no two bursts will be identical. This is clearly seen in Fig. 2B.

A standard way of analysing bursting systems'®2%:2! is to notice that
for many of them there is a separation of timescales, so that the system can
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Fig. 3. Bifurcation diagram for (1)-(6) as a function of I. The value of hy for the stable
and unstable fixed points is shown with the thin solid and dash-dotted lines, respectively.
The maximum of hy over one period for the stable and unstable periodic orbits is shown
by the thick solid and dashed lines, respectively. During bursting, the maximum values
of hg during a period of 500 ms are shown (after transients).

be written
dx
W ya,y) (®)
Tdt = g9\x,Yy

where 1 < 7 and f and g are of similar magnitude. The analysis proceeds
by treating y in (7) as a constant, and performing a bifurcation analysis
of the “fast” subsystem (7) with y as the bifurcation parameter, yielding,
typically, bistability between a periodic oscillation in x and a stable steady
state, over a range of values of y. Now considering the full system (7)-(8),
imagine that g(z,y) is such that when z is oscillating, y slowly increases
(say) until it reaches a value for which there is a bifurcation destroying
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the periodic oscillation (for example, a homoclinic bifurcation). The sys-
tem then jumps to the branch of fixed points, on which y slowly decreases
(say). This continues until another bifurcation destroys the fixed point (for
example, a saddle-node bifurcation of fixed points), at which point the sys-
tem jumps back to the branch of periodic oscillations, and the cycle starts
again. Thus the system as a whole slowly alternates between periodic firing
and quiescence, i.e. it bursts!8.

Another possibility is that the fast subsystem (7) is not bistable for
any value of y, but does have bifurcations of fixed points and periodic
orbits. If y is at least two-dimensional, y could undergo slow oscillations that
cause (7) to repeatedly cycle through regions in which there were alternately
oscillations and fixed points, thus giving bursts of oscillations separated by
quiescent periods'®. By understanding the bifurcations that (7) undergoes
as y is varied, qualitative aspects of the bursting can be determined. Indeed,
by combining pairs of bifurcations in different ways, a large number of
theoretically-possible bursters can be enumerated??.

This type of analysis was also carried out for the system (1)-(6), even
though the separation of timescales is not so clear, with pg being the slowest
variable by a factor of only 5 (see Eq. (6)). Treating p, as a parameter, the
“fast” subsystem (1)-(5) undergoes a bifurcation from periodic firing with
one oscillation of V; per period to periodic firing with two oscillations of
Vi per period as pq is decreased, as shown in Fig. 4. The top panel in this
Figure provides a “skeleton” upon which the bursting of the full system can
be superimposed.

To determine the dynamics on this skeleton, we need to know the dy-
namics of py. From (6) we see that py is driven by Vj only, and so the py
nullcline (where dpg/dt = 0) will be a curve in the pg — V4 plane. This is
plotted in Fig. 5, along with the curves from the top panel of Fig. 4 and
a single burst of the full system (1)-(6). We see that during the first part
of the burst, pg slowly decreases — this is due to the trajectory spending
most of its time in the region where dpg/dt < 0. The burst ends when pqy
decreases below the value at which there is a bifurcation in the fast sub-
system (pg &~ 0.102), a fast “doublet” is fired, and V; drops below the py
nullcline. pg is then reinjected to higher values, crosses the nullcline again,
and another burst starts.

Finally, by choosing parameter values carefully it is possible to use the
two saddle-node bifurcations shown in Fig. 3 to set the timescales of burst-
ing. This effect is shown in Fig. 6 where the slow passage associated with
both the saddle-node bifurcations of fixed points and limit cycles dictate
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Fig. 4. Bifurcation analysis of the fast subsystem (1)-(5) for I = 9. There is a bifurcation
from period-one firing to period-two firing as py is decreased. a: Maxima of V; during
periodic firing as a function of pg. b: V; as a function of time for p; = 0.08. ¢: V; as a
function of time for pg = 0.12.

the inter-burst and burst timescales respectively. The slow passage through
a region of phase space where a saddle-node bifurcation occurs is often re-
ferred to as sensing the ghost of the bifurcation??; it is this effect that gives
the bursting mechanism its name. (Also, the common name for the weakly
electric fish Apteronotus leptorhynchus is the “brown ghost knife fish”.)

4. Unique Features

In this section we contrast the ghostburster with other models of burst-
ing, pointing out some unique features. As mentioned in Sec. 2, many
bursting systems are analysed by splitting them into “fast” and “slow”
subsystems'®2%, For many of these systems, the fast subsystem is bistable
for some values of the (one-dimensional) slow variable (for example, the
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Fig. 5. A single burst (solid line) superimposed on the skeleton shown in the top panel
of Fig. 4 (dotted). The py nullcline is shown dashed (above this, dp;/dt < 0, and below
it dpg/dt > 0). Arrows show the direction through the burst.

square-wave or elliptic bursters!®?!1). Upon splitting the model (1)-(6) like
this, with pg as the slow variable, we do not find bistability for any value of
pa- Indeed, we do not even find stable fixed points for any relevant value of
pa, only a family of periodic orbits. In contrast, some other bursting models
do not have bistability in their fast subsystem, but have a slow subspace
with two or more dimensions (for example, the parabolic burster'®2!). The
ghostburster is not of this type either, as we have only one slow variable, pg.

Another difference between the ghostburster and any other bursters of
which we are aware is the presence of a period-one to period-two bifurcation
in the fast subsystem (see Fig. 4). This transition involves a rapid change
in the appearance of the periodic orbit over a small interval of p; values,
and is a result of the threshold nature of action potential (AP) production.
To the right of the bifurcation in Fig. 4, the DAP that appears at the soma
is not large enough to trigger another AP, but to the left it is, resulting
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Fig. 6. A demonstration of the effects of the saddle-node bifurcations on the dynamics.
Simulations of the system (1)-(6) with I = 5.748 and gp, q = 12.14. These values put
the system near both the saddle-node bifurcation of fixed points (SNFP) and of limit
cycles (SNLC) shown in Fig. 3. Top: Time series of Vi; note the clear bursting pattern.
Bottom: Phase trajectory as projected in the (Vs,py) axis. In phase space the burst
discharge occurs with the slow passage through the ghost of the SNLC, where the firing
is almost periodic. The inter-burst interval is determined by another slow passage, this
time through the ghost of the SNFP.

in two APs in quick succession. It is this “doublet”, and the failure of the
dendrite to respond to the second of the APs, that allows py to recover and
another burst to commence. The exact nature of this bifurcation has not
been determined, but it may be related to the formation of a canard?3.

A further difference is in the way the system responds when the slowest
timescale in the system, 7,, is increased. For other bursters such as the
square-wave, parabolic and elliptic'®, increasing the timescale of the slow
process(es) leads to the durations of both the active (spiking) and quiescent
phases of the bursting being increased. This continues as the slow timescale
is made arbitrarily large. However, for the ghostburster there are qualitative
changes as 7, is increased. As this timescale is increased, recognisable bursts
become longer, but the interburst intervals do not. Instead, between bursts
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Fig. 7. 'The effects of increasing the slowest timescale, 7. V; as a function of time for
Tp = 55ms and I = 15 (top) and I = 20 (bottom).

there are a number of doublets that occur as py slowly increases to its value
at the start of the burst, as shown in Fig. 7 (top). This is because the
interburst interval is not actually caused by the fast subsystem tracking a
branch of stable fixed points, as happens in many other bursters®. Fig. 7,
bottom, shows the effect of further increasing I on the behaviour shown in
the top panel; we have a slow modulation of doublets, with dendritic failure
to a greater or lesser extent. Decreasing I leads to periodic firing, while
increasing 7, further just increases the number of doublets between bursts
(not shown). There is also a lower limit on the value of 7, (approximately
2 ms), below which the system does not burst for any values of I (data not
shown). Thus, 7, must lie in a finite interval for ghostbursting to occur.

It is for these reasons that ghostbursting can be regarded as “novel”.
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5. Extensions and Other Work

Various aspects of the ghostbursting described above have been investigated
further!3:24:25:26:27.28 We now describe some of this work in more detail.

5.1. Reduced Models

Soon after the model (1)-(6) had been investigated, Laing and Longtin®7
presented a minimal model of a neuron that showed ghostbursting, in the
sense of producing qualitatively correct bursts, and showing the appropriate
transitions as the injected current was changed. This model was a modi-
fied integrate-and-fire neuron, with a second variable to cluster the action
potentials. The equations are

dv

E:I—V+c;H(tn—tn,1—r)&(t—tn—a) (9)
dc 9
az—c/7’+(B-|—C’c );6(t—tn) (10)

with the rule V(¢}) = 0 if V(¢;) = 1, where H(-) is the Heaviside step
function, ¢ is the Dirac delta function, I is the injected current, and r, o,
7,B and C are constants. The ¢,, are the firing times, r corresponds to
the dendritic refractory period and ¢ mimics the effective delay between a
somatic action potential and the appearance of a DAP caused by current
flow from the dendrite to the soma.

Typical bursting behaviour of the model (9)-(10) is shown in Fig. 8. We
see that ¢ is incremented at each action potential: ¢ — ¢ + B + Cc?, and
decays exponentially to zero otherwise, with a time constant 7. Also, at a
fixed delay (o) after most action potentials, V' is incremented by the current
value of ¢. If two successive action potentials are too close in time (less than
r apart), V does not get incremented after the second of those two APs,
and there is a gap until the next burst starts. If I is gradually decreased,
the bursts get longer, and then the system starts behaving periodically, in
agreement with the other models (not shown).

Because (9)-(10) is piecewise linear, we can explicitly integrate from one
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Fig. 8. Voltage (V, top) and ¢ (bottom) as functions of time for the minimal model (9)-
(10). Two complete bursts are shown. Parameter values are ¢ = 04,7 =1, = 0.7, B =
0.35,C = 0.9, 1 = 1.3.

firing time to the next, obtaining a firing time map

o ifA,>randI+s,>1
Apti =S o+In[s, /A1 -1)] if Ay, >rand [ +s, <1 (11)
In[I/(I-1)] ifA,<r
2
Cng1 = Cne 2nt/T L By O [cne*A"“/T] (12)

where A, =t,, —t,_1, ¢ = ¢(t}), and s, = c,e=/7 — Ie~°.

This exact map avoids the introduction of errors through numerical
integration and allows one to quickly generate a sequence of firing times.
It is also easy to use this map to see how changing parameters will change
the behaviour of the system (9)-(10) through, for example, bifurcations of
specific types of solution?’. Although bursting in maps has been previously
studied®®, we believe this to be the first map from one firing time to the
next that shows bursting.
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5.2. Periodic Forcing

The pyramidal cell under study receives input from electroreceptors on the
skin of the fish®. These detect the electric field around the fish. For a freely-
swimming animal, the electric field and thus the input to the pyramidal
cells will be time-dependent. A natural way to study the effects of time-
dependent input on a pyramidal cell is to study periodic input. This periodic
input could come from at least two sources: the periodic electric organ
discharge itself, or the “beat” frequency that occurs when two fish with
different frequencies meet.

Laing and Longtin®” studied the minimal model (9)-(10) with sinusoidal
modulation of the input current I. Because of the simplicity of the system,
a map for firing times could again be derived. These authors used this map
to show how resonance (Arnol’d) tongues — in which the neuron is “mode
locked” to the forcing frequency — could be traced out in parameter space.
They also investigated the effects of noise on such a map and showed that
30 in which the signal-
to-noise ratio is maximised at a moderate value of noise intensity, provided
that bursts were used as the “signal”, rather than all action potentials.
Subsequently, Laing and Coombes?* studied the model (9)-(10) under ar-
bitrary periodic forcing, analysing general p : ¢ mode locking, for which the
neuron fires p times during ¢ forcing periods. They studied the stability of
these types of solutions by linearising about them, and found non-smooth
bifurcations in the flow that had been previously overlooked.

Laing and Longtin?® also studied the model (1)-(6) under sinusoidal
modulation of the input current I. They found that the modulation could
shift the value of I corresponding to the periodic/burst transition (see
Fig. 3) in either direction, depending on the frequency of modulation. They
also found stochastic resonance, provided that bursts be used as the signal
rather than action potentials, in agreement with previous results?”.

the model neuron could display stochastic resonance

5.3. Burst Excitability

The concept of “burst excitability” was first introduced by Laing and
Longtin?’ and then studied in detail by Laing et al.?® Burst excitabil-
ity is a generalisation of “normal” excitability, seen in neural and other
systems'® 2! The usual notion of excitability is that a system is at rest and
there exists a threshold such that if a perturbation pushes the system past
the threshold, it undergoes a large stereotypical excursion in phase space
before returning to rest. If the perturbation is not large enough to push the
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system past threshold, it returns directly to the rest state.

Such excitability occurs in neural systems for which the bifurcation
from quiescence to periodic firing as the injected current is increased is a
saddle-node-on-a-circle bifurcation'”. The essential ingredients here are the
saddle-node bifurcation, and the existence of a “global reinjection” mecha-
nism that takes the trajectory (once it has passed the threshold) through
a large excursion in phase space and returns it to the stable fixed point.
These ingredients also exist for the ghostburster near the bifurcation from
periodic firing to bursting. There is a saddle-node bifurcation (of periodic
orbits) and a global reinjection mechanism in the form of the decrease of
pq during a burst and then its rapid increase between bursts. Thus there
should be excitable behaviour near the bifurcation from periodic firing to
bursting, but with the quiescent fixed point and action potential (for normal
excitability) replaced by periodic firing and a burst, respectively2®.

This type of burst excitability is shown in Fig. 9. Here, I was stepped
from 8.3 to either 10.5 (thin line) or 11 (bold line) during the interval
300 < t < 310. (Note that for I = 8.3, the system is firing periodically.)
The smaller step failed to induce a burst (i.e. did not push the system past
threshold) and the system returned directly to its previous state, namely
periodic firing. The slightly larger step did induce a burst, as seen from the
slow decrease and then rapid increase in py. Note that most of the burst
occurred after I had returned to its original value, another signature of the
excitable nature of the system.

This type of burst excitability was also shown to occur in the minimal
model®? (9)-(10) and Laing et al.?® showed that it occurred in the more re-
alistic multi-compartmental model®. These authors also discussed the pos-
sible relevance of burst excitability to communication between weakly elec-
tric fish, and derived a scaling relationship between the size and duration
of a stimulus that is needed to produce a burst in the ghostburster (or
any other similar excitable system). Several authors have proposed that
bursts rather than action potentials could be the fundamental units of neu-

31,32 " and the ghostburster is an example of a neuron

ral communication
which robustly produces bursts in response to physiologically-realistic per-

turbations in input.

5.4. Dzifferential Modulation of Burst Discharge

The multi-compartmental model® and a modification of the minimal model
presented in Sec. 5.1 were used by Noonan et al.'® to reproduce and under-
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Fig. 9. Burst excitability in (1)-(6). Two different current pulses (shown in bottom
panel, 1/30 their actual size) were applied. The larger one (bold) induced a burst (top
panel, where the somatic voltage is plotted), while the smaller one (thin line) did not
(middle panel, showing somatic voltage). Top and middle panels: Vi as a function of
time. Bottom panel: pg and 1/30. See text for more detail.
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stand the different effects that somatic and dendritic potassium channels
have on burst length. As explained above, the different widths of the so-
matic and dendritic action potentials (APs), and the slow increase in the
width of the dendritic APs during a burst, are an essential part of the burst-
ing mechanism. In both the soma and the dendrite, the flow of potassium
ions is responsible for the repolarization of APs. By blocking potassium
channels in the neuron’s dendrite, dendritic APs become wider, enhancing
the size of the DAPs that appear at the soma. This causes bursts to become
shorter (if the neuron is already bursting) or can cause the neuron to start
bursting (if it is below, but near, the periodic/burst bifurcation).

Conversely, if potassium channels at the soma are blocked, somatic APs
become wider, thus lessening the size of the DAPs. This causes bursts to
become longer (if the neuron is already bursting) or stop altogether, leaving
the neuron firing periodically. The advantage of using such a simple model
as (9)-(10) to study an effect like this is that the behaviour of interest
could be seen by simply following a curve of saddle-node bifurcations of
fixed points in the parameter plane!3.

6. Parallel Processing with Bursts and Isolated Spikes

The original experimental characterization of ELL pyramidal cell burst dis-
charge was in response to static depolarizing inputs%9. As described above,
there have been successful theoretical efforts in characterising the response
of the ghostburster system to periodic inputs as well as to instantaneous
step depolarizations. However, weakly electric fish thrive in a sensory envi-
ronment with very rich temporal structure. Prey inputs and natural scenes,
such as the electric image of the fish’s own tail, are typically composed of
only low frequency components (0-10 Hz). This is in contrast to intra-
specific communication calls that are broadband in their spectral content
(0-200 Hz). An often-used simplification of natural scenes is to model its
temporal structure as Gaussian band-limited noise. It should be mentioned
that this simplification is not always appropriate, most notably in the au-
ditory system?33. Nevertheless, this strategy has been successfully employed
on numerous occasions in in wvivo electric fish studies'®343%. A study of
how the in vitro ghostburster system processes stochastic inputs has only
recently been undertaken %3738 This section will briefly describe the main
findings of these studies.
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6.1. Ghostbusting the Ghostburster

In Oswald et al.?® broadband Gaussian stimuli (0-60 Hz) were applied to
ELL pyramidal cells in a slice preparation. The spike trains observed were
quite distinct from those observed in response to static depolarizations.
Notably, the random stimuli elicited a mixture of both isolated spike dis-
charge and bursting, with bursts often consisting of only two spikes and
without the characteristic large AHP at burst termination. The difference
between autonomous and driven burst discharges is presumably that the
high-frequency components in the stimulus — specifically, rapid hyperpo-
larizations — prematurely terminate burst discharges before a full burst is
completed. This assumption can be used to greatly simplify the mathemat-
ical modelling of the burst mechanism.

The ghostbursting mechanism described in Sec. 2 involves three main
components: 1) a dendritic dependent DAP at the soma, 2) a potentiation
of the DAP over a burst event, and 3) a longer refractory period of the
dendritic action potential as compared to the somatic action potential. The
relatively slow timescale of the dendritic potassium inactivation allows for
significant DAP potentiation, typically only over bursts of many spikes;
this is evident in both Figs. 1 and 2. Somewhat less apparent from the
modelling presented in this review is that the dendritic refractory period
is not a fixed quantity, but increases as more spikes occur during a burst.
This was demonstrated experimentally by Noonan et al.'®. In this paper
the authors forced the neuron to discharge periodically with inter-spike
intervals between 5 and 7 ms and observed that dendritic spike failures
occurred only after multiple (approximately 5) dendritic spikes, indicating
that earlier spikes acted to dynamically increase the dendritic refractory
period.

The lack of many-spike bursts in response to broadband Gaussian stim-
uli permits an approximation of ELL burst dynamics that contains only
DAPs and ignores burst mechanism components 2) and 3). Motivated by
past leaky integrate-and-fire modelling of ghostbursting!®?7 the following
description was postulated”-3%
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dv
E = —V‘F’}/w(t—a)‘f'.[stim(t) (13)
dx
- 14
il (14)
&y = —a’r — 2ay + o? E ot —tn) (15)
dt

n

with the rule that once V reaches 1 from below, V is reset to 0 and held
there for a time 7, before being allowed to continue evolving under (13).
Time is measured in units of the membrane time constant. The firing times,
{tn}, are defined to be the times at which V reaches 1.

The dynamics of (13)-(15) is quite simple in comparison to those of
the full conductance-based ghostbursting system (1)-(6) or even those of
the reduced model (9)-(10). Equation (13) is a standard leaky integrate-
and-fire description of spiking dynamics with a refractory period 7,.. The
solution of the subsystem (z,y) with the initial conditions z(0) = 0 and
y(0) = a? is the so-called alpha function: z(t) = a*te . Every time V (t)
spikes, there is a time delay o, after which an alpha function of intensity v
drives the membrane dynamics; this models the dendritic DAP’s influence
on somatic spike generation. In contrast with (9)-(10), the DAP dynamics
are linear without the possibility of potentiation or refractory dynamics.
When Igtim(t) = I, independent of time, the system (13)-(15) gives simple
tonic discharge for all values of I. Thus (13)-(15) is not an autonomous
burster, unlike many of the models reviewed in this book. There is no
saddle-node bifurcation of limit cycles or chaos for any value of I. We have
thus removed (or “busted”) the “ghosting” behaviour so crucial for our
understanding of burst respounse to static inputs. However, when g, (t) is
a stochastic process with Gaussian spectra between 0-60 Hz, the dynamics
of (13)-(15) reproduces the experimentally-measured first and second order
statistics of both the spike train and ISI sequence, as well as the linear
signal processing of a broadband input stimulus.

Figure 10A shows numerical simulations of (13)-(15) when driven with
broadband Gaussian input. Note the presence of both isolated spikes and
bursts of two spikes. Both the dendritic DAP, z(t), and the stimulus,
Istim (t), are also shown. Figure 10B shows bimodal inter-spike interval (ISI)
histograms of pyramidal cell spike train data. The model shows similar be-
haviour with active dendrites (v > 0) but unimodal ISI histograms when
the dendrite is passive (7 = 0). To measure action potential patterning we
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compute the spike train autocorrelation®® defined as

(s()s(t+ 7))
(s(t)?)

where s(t) =), 6(t—t,) and (-) is an average over time. A(7) is the mean

corrected probability of observing a spike 7 time units after (or —7 time

A(r) = (16)

units before) another spike. “Mean corrected” implies that when A(7) =0
the statistics of s(t) should be interpreted as having the equivalent statis-
tical structure as a simple Poisson process with the same firing rate.

A(7) is shown for both the model and the data in Fig. 10C. After an
interval of reduced probability of spiking again, due to refractoriness, there
is an interval of enhanced probability of firing a spike at approximately
5—7Tms after the previous spike. The probability of firing again then decays
rapidly back to Poisson statistics within 10ms of the previous spike. The
passive dendrite model (v = 0) shows that this increased probability is due
to the DAP current promoting spike discharge after a spike, but only for
a short period. The combination of both the bimodal ISI distributions as
well as the distinct non-Poissonian spike statistics as observed from A(r)
allow us to describe the stochastic behaviour of (13)-(15) as bursting. Sim-
ilar statistics were used to characterize the burst discharge of in vivo ELL
pyramidal cells®C.

6.2. Spike Train Processing

To investigate the processing done by pyramidal cells, we introduce the
coherence C(f) between the input stimulus S and the spike train response
R:
C(f) = Psr(f)? _
Pss(f)Prr(f)
Psr(f) is the cross spectrum between S and R, Pss(f) is the power spec-
trum of S and Prg(f) is the power spectrum of R. Quite simply, C(f) is
the frequency-dependent linear correlation between S and R; it is a num-
ber between 0 and 1 with 0 representing no correlation and 1 representing
perfect correlation at a given frequency f. The coherence between the full
spike train and the stimulus for both the data and the model system (13)-
(15) is relatively broadband (slightly lowpass), as shown in Fig 11B. This
is similar to in vivo results when the stimulus is applied to a small fraction
of the total receptive field**.
In order to better understand pyramidal cell coding, Oswald et a
partitioned the full spike train into two component trains: an isolated-spikes

(17)

156
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Fig. 10. Stochastic burst discharge in electrosensory pyramidal cells. A Time series of
V(t) (top) and z(t) (middle) when driven with Igs i, (shown in the bottom panel).
Note the lack of refractory period in the dendritic response z(t). B ISI histograms
(top) and spike train autocorrelation (bottom) for both slice experiment data and the
model (13)-(15), computed from 100 seconds of spiking activity. The model results show
simulations when the dendrite is active (7 = 1.2), and when the dendrite is passive
(v = 0). Other model parameters are 0 = 0.2,7, = 0.2, = 12.5, (I5¢im) = 0.88, and

2
<Istim
experimental methodology is as described in Oswald et al.?6. Data provided by Anne-

Marie Oswald.

) — (Istim)? = 0.185. The membrane time constant was taken to be 5 ms. The
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Fig. 11. Parallel processing of dynamic stimuli by bursts and isolated spikes. A An
ISI threshold of 10ms is used to partition the spike train into isolated spikes (for which
both neighbouring ISIs are greater than 10ms) and bursts (spikes for which an ISI is
less than 10ms). The time at which a burst occurs is taken to be the time at which the
first spike in the burst occurs. B The coherence between the full spike train (thin black
line), isolated spike train (gray line) and burst train (thick black line), and the stimulus
(Gaussian noise with power between 0-60 Hz). The details for both the data and the
model are identical to those for Fig. 10. Data provided by Anne-Marie Oswald.

train and a burst train. This partitioning is schematically shown in Fig. 11A
and briefly described here. Every spike in a spike train defines two ISIs:
the ISI that it begins and the one that it terminates. An ISI threshold
corresponding to the local minimum of the ISI probability distribution is
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set. If both ISIs that a given spike defines are greater than this threshold,
then that spike is considered an isolated spike. In a complementary sense,
if one or both of the ISIs are less than the threshold then that spike is
involved in a burst. The burst train is further simplified by removing all
but the first spike in a burst; the results presented are not sensitive to this
reduction.

Interestingly, the coherence between the burst train and the stimulus
is low-pass while the coherence between the isolated-spikes train and the
stimulus is high-pass (sometimes band-pass). This occurs in a statistically-
significant fashion in experiments, in the reduced model (13)-(15), and in a
modified version of the full ghostburster system (1)-(6). (See Fig. 11B and
Oswald et al.®® for results not shown.) Thus, this separation of the spike
train reveals the potential for the pyramidal cell to selectively code for
both low-frequency components via bursts and high-frequency components
via isolated spikes. Furthermore, this coding occurs in parallel since the full
spike train simultaneously carries both bursts and isolated spikes (providing
that the stimulus is dynamic).

The usefulness of this parallel coding by bursts and isolated spikes of
a broadband signal presupposes that the decoding mechanisms of higher
brain centers are sensitive to this sort of encoding. ELL pyramidal cell out-
put is decoded in the torus semicircularis (TS) of the midbrain. Fortune
and Rose*! have shown that different TS cells have distinct tuning prop-
erties with respect to external in vivo inputs: specifically, some show low-
pass characteristics while others have a high-pass nature. Oswald et al.3®
suggested that their low-/high-pass nature was synaptically mediated to
respond selectively to either bursts or isolated spikes from ELL pyramidal
cells. However, much more work must be done to decisively conclude this
point.

7. Summary

We have given an overview of a recently-characterised form of neural burst-
ing, known as “ghostbursting”, that occurs in pyramidal cells of weakly elec-
tric fish. We have described the various stages involved in its analysis, from
experimental observations and the construction of a multi-compartmental
model to the analysis of simple caricatures involving two or three differen-
tial equations. In the process of analysis we have found a number of features
of ghostbursting that do not appear in any previous bursting models. We
have also discussed the possible “use” made of the bursting dynamics by
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the electric fish, in terms of the processing of electrosensory signals, and
found that these neurons seem to be capable of transmitting at least two
parallel streams of information, encoded in the timing of bursts and isolated
spikes.
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