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Abstract 

Nitrogen (N) leaching has a major impact on fresh water quality and farmers are under 
pressure to reduce these losses. Farmers, working under an N discharge allowance, require 
cost-effective mitigation strategies to reduce N leaching losses sufficiently to allow an 
increased stocking rate that sustains their financial viability. Broadcast application of a 
nitrification inhibitor is too costly for hill land farmers, but targeting DCD at stock camps is 
one cost-effective strategy that reduces N leaching loss. This study developed a cattle 
resting (stockcamp) prediction model based on GPS velocity. Contours of eight paddocks 
within Taupo farms were generated and soils samples were collected from 83 sites covering 
known camp (low slope, under trees, around water troughs and gateways) and non-camp 
(hill) areas for analysis of Olsen P status, since grazing animals deplete P on slopes and 
accumulate P at campsites. Mean Olsen P values were >30 at campsites and 13.8 on hill 
slopes, confirming that campsites can be selected from a contour map. The model will be 
validated against maps of measured urine excretion densities and known contour. 
Successful validation will see contour maps (slope, aspect, elevation) used to predict 
campsites within the eight soil-sampled Taupo paddocks. Robustness of the resting model 
will require additional datasets comprising only cattle GPS and paddock contour from a wide 
range of environments and seasons. We envisage farmers using a CSA map to cost-
effectively target mitigation strategies at only small areas within hill paddocks to reduce N 
losses from about 50% of cattle urine patches. 
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Introduction 

While farmers are under ever increasing pressure to reduce animal excreta entering 
waterways, government targets of doubling the value or agricultural exports while halving 
environmental impacts by 2025, increases this pressure. Even by improving food conversion 
efficiency of livestock, every stock unit added to the NZ livestock inventory increases 
excretal deposition. At present, farmers within the Lake Taupo catchment are farming under 
a nitrogen (N) allowance that effectively prevents them increasing farm inputs without using 
N leaching loss mitigation strategies. Mitigation strategies for all farms need to be cost 
effective, especially within hill country regions where animal enterprises are less profitable.  

We know that cattle grazing hill country pastures typically rest in low-slope areas, 
performing about 50% of their daily urination events in these stockcamps (Betteridge et al. 
2010a; Betteridge et al. 2010b). It has been shown that targeting dicyandiamide (DCD) at 
stockcamps is one strategy that can reduce N leaching in hill country (Betteridge et al. 
2011). This is cost-effective since DCD targeted only at stockcamp sites in hill pastures, 
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which occupy just 5-15% of the paddock area, can potentially mitigate N losses from half of 
all cattle excreted urine patches (Betteridge et al. 2011).  Further, it has been shown that 
there is a good relationship between the time an animal rests in particular places in the 
paddock and the number of urination events counted in these places. Therefore, by 
predicting where cattle will rest would enable a map to be drawn of campsites that require 
a targeted mitigation approach. 

The resting place predictive Generalised Additive Model (GAM) presented at this conference 
last year (Betteridge et al. 2012) was developed based on 5 days of data from a 0.5 ha 
paddock with limited aspect variation. To develop a general model, applicable to large areas 
of a region, the model requires data from many more representative sites that are likely to 
be encountered by animals. Thus, individual paddocks that provide variation in the ratio of 
hill to flat land, and variation in slope, aspect and elevation, are needed to populate the 
database for generating a robust model. Because of the limited access to and cost of using 
multiple animal sensors in grazing studies, being able to use GPS resting time and location 
data as the proxy for urine excretion sites will enable a much greater number of 
experimental datasets to be used when developing the robust model. The Ballantrae 2009 
dataset (Betteridge et al. 2012) had resting time data accurately determined by a 3-D 
motion sensor. With these data we were able to confidently differentiate between an 
animal at rest (standing or lying) or actively moving and grazing. 

Campsite position (determined by Eastings and Northings with a GPS) is important for map 
creation, while at a regional scale GPS data may allow the introduction of sub-models 
specific to a sub-region. A GPS used at the time of applying a mitigation tool can also be 
used to verify the mitigation activity. GPS data also serve to link animal movement data with 
land resource data. 

Before Targeted DCD can be included as a mitigation strategy in the Overseer® nutrient 
budget model it is necessary that an accurate farm map of critical source areas (CSAs) is 
generated for the farmer, to show where to apply the mitigation product/strategy. This 
study had two components. In the first, we soil sampled obvious campsite and non-campsite 
areas within hill paddocks of farms in the Lake Taupo catchment and recorded the GPS 
position of these sites. Soil tests were used to verify the presence of high nutrient loadings 
in campsites compared to low loadings in slope soils. This results from campsite 
accumulation of faecal matter over many years of grazing, compared to slope areas which 
“export” nutrients and thus have low Olsen P values (Rowarth et al. 1992; Lambert et al. 
2000). Secondly, we needed to predict the location of cattle campsites. For a resting cow, 
GPS locations will change only because of random GPS error. Thus, GPS velocity would be 
very slow. We used this concept to model where cattle were resting in a paddock at the 
Motere station near Taupo. In the next phase of this work we will correlate resting positions 
with contour data for this paddock with the intent to predict campsite locations from 
contour data. If this proves satisfactory, we can enhance the robustness of the model based 
on cow GPS and contour data from many more trial sites where other behavioural data are 
not available. This project describes how the resting model was developed. The prediction 
model will later be validated against datasets that have GPS, contour (slope, elevation and 
aspect) and urination event data (e.g. Ballantrae and Motere). Ultimately, farmers will be 
provided with a CSA map based solely on their paddock’s contour data. 
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Methods 

Animal and Sites 

The Ballantrae dataset was used to determine the threshold GPS velocity for resting. This 
was stocked with 20 rising 2-yr-old beef heifers (average LWt 264 kg) for 5 days. Each cow 
was fitted with a GPS collar and urine sensor (Betteridge et al. 2010b) and an IceTag© on the 
left hind leg that determined resting time (Betteridge et al. 2010a). 

The model for predicting resting time (hereafter referred to as the ‘resting model’) was 
developed using the GPS data from the Motere station, on the western side of Lake Taupo 
and previously owned by Landcorp. Although the Angus beef cows (with calves at foot) were 
fitted with a GPS collar and a urine sensor, only the GPS data were used to develop the 
model. The cows were stocked at ~35 sheep stock unit equivalents/ha over 7 days 
(December 2006) in a steep 11 ha hill paddock. There was ample feed throughout the 
grazing period and stock water was available from two water troughs located on relatively 
flat sites (Kawamura et al. 2009; Betteridge et al. 2010b). 

Grid cells 

In GIS modelling it is common to aggregate infinitely variable data within grid cells 
overlaying the GIS site map. These may be 5 m x 5 m, or 10 m x 10 m grid cells. Thus, our 
data have been defined as: number of different animals visiting a 5 m x 5 m cell; total time 
spent in a cell; and total time resting (= standing + lying) in a cell, aggregated over all 7 days 
of the experiment. Average slope, aspect and elevation within each cell were also available.  
Where grazing or walking was a continuous process across many cells, these data were 
disaggregated and appropriately apportioned to each cell. Average velocities of walking and 
grazing events were determined before disaggregation and then movements were 
apportioned to the cells, where necessary. Motion-sensor-based resting time was 
accumulated within each cell.  

Data normalisation 

In trials such as this, incomplete datasets for one or more animals in a mob are often 
encountered due to sensor failure or intentional on-off cycling of the GPS to save battery 
power or to limit dataset size. Also, different trials, designed for a range of different 
purposes, introduce data anomalies between trials. For example, where stocking density is 
high or grazing duration within a paddock long, there is a greater probability that a grid cell 
will be visited at least once, compared to the situation where densities are low or durations 
are short. To enable compatibility, our data were normalised appropriately, as shown in the 
results and discussions section. 

The model 

The resting threshold velocity was determined from Ballantrae data using a logistic 
regression model (in conjunction with ROC, receiver operating characteristic, analysis) 
where resting time was modelled based on the GPS track velocities for each animal track in 
each grid cell.  The derived velocity threshold was then used with Motere data to develop 
the ‘resting model’. All analyses were done within Excel or with R software (2012).  
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Soil sampling 

In November 2012, ten soil cores (0-75 mm depth) were collected from 83 camp, hill, under-
tree and water trough sites within eight paddocks on farms in the Lake Taupo Catchment. 
Soil from each site was analysed for phosphorous by the Quicktest methods. The location of 
each site was recorded by GPS so that it could be overlaid on the paddock’s contour map as 
evidence that it was indeed correctly classified especially as a campsite or slope.  

Results and Discussion 

GPS threshold velocity 

The GPS threshold velocity below which resting can be assumed, based on the logistic 
regression model, was computed to be 0.011 m/sec. This was the optimal cut off velocity 
obtained by minimising the misclassification error rate (Fig. 1). 

 

Figure 1 Logistic curve showing the threshold probability for determining the optimal GPS 
velocity cut-off as the proxy for lying time (based on Ballantrae data). 

Normalized resting time 

Since the data for modelling (GPS velocity based) resting time could potentially come from 
paddocks with widely varying size (no. of  5m*5m grid cells) and no. of animals used in the 
experiment, a normalization process is required to make the resting time compatible across 
the paddocks. For example, Ballantrae consisted of data from 17 cows observed over 5 days 
on 256 (5m × 5m) grid cells while Motere data came from 20 cows over 7 days based on 
4471 grid cells. 

One way to normalize data from different paddocks is to first normalize the total resting 
time within each cell by the total number of animals used in the paddock, and then to 
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normalize this by the average total time each animal spent in each cell. For example, at 
Motere, the normalized resting time = (resting time at each cell/20)/(7 days/4471), and for 
Ballantrae normalized resting time = (resting time at each cell/17)/(5 days/256) (Fig. 2). 

a) Ballantrae before normalization                             b) Ballantrae Normalized 

c) 
Motere before normalization 

 
d) Motere Normalized 

 
 
Figure 2 Paddock grid maps of resting time in grid cells before (a & c) and after 
normalization (b & d). Grey grid cells indicate non-visitation and white cells indicate 
visitation without resting. Maps (a & b) are for Ballantrae (0.5 ha) and (c & d) are for Motere 
(11 ha). Note reduction in resting time scale range between before and after normalisation. 
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The before and after normalized resting times for Motere values were 0 to 600 minutes (Fig 
2a) and 0 to 30 (Fig. 2b) respectively. In comparison Ballantrae ranged from 0 to 2500 
minutes (Fig. 2c) before and 0 to 6 minutes after normalization (Fig. 2d). The normalization 
reflects the expected amount of time an animal spends resting in a cell proportional to the 
size and total experimental time associated with the paddock concerned. Note that in the 
maps above that the normalization has not changed the relative resting times in grids, i.e. 
darkness of the cells are exactly the same before and after normalization. 

Soil tests 

Olsen P soil results, used as a proxy for detecting campsites are presented in Table 1. While 
slopes had an average Olsen P of 13.4, camps, gateways, areas under trees and around 
troughs could all be classed as potential CSAs of N leaching since their Olsen P values 
indicated resting behaviour caused by aggregation of faeces. Since the deposition of faeces 
(N. Watanabe, pers. comm., Japan) and urine (Betteridge et al. 2010b) is each correlated 
with resting time in any particular area, only hill slopes are areas where there is likely to be 
minimal aggregation of urine patches that can be targeted with a N leaching mitigation 
strategy. However, we suggest that as urine patches on hill slopes are generally long and 
narrow, rather than round (as on flat land), there are many more plants in and surrounding 
a long narrow patch can uptake urinary N than there are plants around and within a round 
patch containing the same N load (g N/m2). If confirmed, then the leaching loss of urinary N 
from hill slopes is likely to be lower than from the same amount of urinary N excreted on 
flat land. 

Table 1. Average Olsen P values of 10 bulked, 0-75 mm deep samples collected at 
subjectively chosen sites in seven hill paddocks in the lake Taupo catchment (n is the 
number of samples in the category).  

Sampling 
site N Ave. P SD CV 

Camp 32 38.0 17.7 47% 
Gate 33 53.2 29.8 56% 
Slope 4 13.4 7.6 57% 
Tree 7 60.0 48.7 81% 
Trough 7 62.7 22.1 35% 

 

General  

A robust CSA prediction model will require many more GPS datasets with associated 
contour maps that cover a wide range of slope classes, paddock sizes, seasons, and localities 
within and between regions. Because the resting model requires only GPS cattle movement 
and paddock contour data, bringing together such data will be much easier than if urine and 
motion sensors were also required to provide the direct detection of CSAs.  

The derived prediction model of resting sites in the Motere paddock will be validated by 
comparing predicted CSAs at both Ballantrae and Motere with the respective urine-sensor-
defined sites and contour datasets. Given that campsites are typically found on low slope 
areas in hill country (Betteridge et al. 2010a, b), once the resting model has been validated it 
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will be used to test whether the soil sampled camp and non-camp sites in the eight 
paddocks on Taupo farms conform to the known slope classes of these sites. 

We envisage that farmers will use contour-generated maps of CSAs in cattle-grazed pastures 
as the basis for targeting N leaching loss mitigation strategies to enable them to increase 
farm inputs while remaining within their farm’s nitrogen discharge allowance. 

Conclusion 

This paper suggests that data from cattle fitted with a GPS device can be used to determine 
where they rested, based on the threshold velocity of <0.011 m/sec. In turn, this can be 
used as a proxy for where they would deposit about half of all their daily urination events. 
Where resting grid cells are congregated within a paddock, the area would be considered a 
critical source area of potential nitrogen loss. Additional areas will be around trees, water 
troughs and gateways. 

The resting model needs to be validated against actual urine patch location and contour 
data, after which it will be used to predict the CSAs amongst the 83 soil sampled sites on 
Taupo hill country farms for which contour data are known. We expect that farm contour 
maps will be used to predict the location of N leaching CSAs in cattle-grazed hill country 
paddocks. Farmers will use these maps to target an N loss mitigation strategy. As nitrogen 
CSAs in hill country can contain 50% of urination events in only 5-15% of the paddock area, 
CSA-targeted mitigation offers a cost-effective method of mitigating about 50% of N losses 
to the environment.  

A constraint of this study is that it is based purely on data collected from two paddocks. A 
robust model acceptable to environmental regulators will require data from many more 
sites.  
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