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Abstract 

Agricultural science in New Zealand has traditionally been well served by the classical 

science model. The model has enabled specialist agricultural research teams to extrapolate 

results from small samples to produce a significant knowledge return on investment. 

The advent of big data in agricultural science is producing a radical transformation in the way 

value is generated from scientific research. Hyperspectral imaging (HI) technology is used by 

Massey University‟s New Zealand Centre for Precision Agriculture (NZCPA) in a variety of 

applications. Unlike traditional agricultural research, HI produces superabundant, multi-

layered data early in the science process. 

This study explores how the NZCPA is adapting its science processes in order to capitalise on 

the possibilities generated by the new data economy. The paper documents the iterative, 

cyclical science process being developed by NZCPA in order to refine value from the 

superabundant, versatile data. An example of how this non-linear process and a 

multidisciplinary approach, including farmers and scientists from other  fields, have  been  

used  to  extract  unplanned  value  from  hyperspectral  imaging data  is  provided.  The  

study  highlights  the  need  for  agricultural  science  to  adapt  in order to maximise the value 

refined from the new data economy. 

 

Introduction  

Precision agriculture (PA) is rapidly evolving. Capturing and responding to real world 

variability is a defining objective of PA. While PA development has been established on an 

extension of existing agricultural technologies, i.e. variable-rate technologies (VRTs) and 

vehicle guidance systems, it is quickly moving into the diagnostic space (McBratney, Whelan, 

Ancev, & Bouma, 2005). In particular, hyperspectral sensing and imaging (HSI) promises to 

genuinely assist decision-making whilst also helping to achieve „traditional‟ agricultural 

applications such as fertiliser, seed and pesticide placement (Grafton & Yule, 2015; McAfee, 

Brynjolfsson, Davenport, Patil, & Barton, 2012).  

The New Zealand Centre for Precision Agriculture (NZCPA) is a Massey University-based 

science centre working on a major project; a Primary Growth Partnership called “Pioneering 
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to Precision.” The researchers are using airborne hyperspectral imaging (HI) to predict 

nutrient concentrations in plant tissue to guide and inform fertiliser decision making (Grafton 

& Yule, 2015; MPI, 2014). HSI produces highly versatile, real-time multi-layered data in 

extraordinary volume, which then needs to be refined into useful knowledge (Pullanagari, 

Yule, King, Dalley, & Dynes, 2011).  

This study explores how the NZCPA is adapting its science processes in order to capitalise on 

the possibilities generated by the new data economy.  The paper documents the iterative, 

cyclical science process being developed by NZCPA in order to refine value from 

superabundant, versatile data. The  study  highlights  the  need  for  agricultural  science  to  

adapt  in order to maximise the value refined from the new data economy. 

 

The challenge of ‘big data’ for Precision Agriculture 

Data-rich technologies are likely to bring forth both opportunities and new challenges for 

science teams (Sonka & IFAMR, 2014). For example, big data tools such as the proximal 

ASD FieldSpec® Pro spectrometer and airborne AisaFenix (Specim, Finland) hyperspectral 

imager are replacing the expensive, laborious and time-consuming data-collection methods 

with the non-invasive, rapid collection of high volume, versatile data (ASDInc, 2016; 

Pullanagari et al., 2011); we call this the „new data economy‟. Like many other big data 

applications, the data-intensity of HSI technology is providing challenges with regard to 

processing and extraction of value (Pullanagari et al., 2012; Sonka & IFAMR, 2014; Von 

Bueren & Yule, 2013).  Early observations of the science process at NZCPA indicate that the 

linear, classic science model is not ideal for refining value from big data PA technologies.  

 

The old data economy 

Agricultural science in New Zealand has traditionally been well served by the classical 

science model.  The  model  has  enabled  specialist  agricultural  research  teams  to 

extrapolate  results  from  small  samples  to  produce  a  significant  knowledge  return  on 

investment (Alrøe & Kristensen, 2002). There are lots of variations on the model, but they 

generally follow a linear, efficient approach to the science process (see Figure 1). 

Agricultural scientists have usually had to work on constrained budgets and sampling has 

been time-consuming and expensive (Huberty, 2015). Research projects are carefully 

designed so the data is received late in the process after planning on how best to structure the 

research so that it produces statistically significant results. In this old paradigm, agricultural 

scientists have gained „big knowledge‟ through generalisation. This has been efficient, but the 

trade-off from this approach is the potential for inaccuracy. In the old paradigm, the research 

problem is decided at the front end of the process, often with a hypothesis that is to be proved 

true or false. 

This linear approach means that only the bare minimum of samples are needed to get an 

output, and the results are extrapolated to other areas; we call this data scarcity. Note also that 
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data is received late in the process; that is by design. Usually, there is a lot of work done in 

the research design and planning stages of the science process to ensure that the data (which is 

the most expensive part) is exactly what is needed to answer the initial research question only. 

 

 

Figure 1: Classical Science Process 

 

The new data economy 

HSI technologies coming on-stream in agricultural science completely change the data 

economy because they produce a huge amount of multi-layered data quickly and cheaply. For 

example, with traditional soil testing methods, you would be lucky to take 30 soil samples 

over a 3,000ha area; with the AisaFenix, which has a pixel size (at 600m altitude) of 

approximately 1 metre you can take 30 million measurements in less than two hours (see 

Figure 2). We call this data superabundance. 

 

Figure 2: The new data economy. 
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Data collected in a single flight may be used not only to detect deficiencies of nutrients 

related to growth, but the versatility of the data also offers the potential to address cross-

disciplinary problems (Alrøe & Kristensen, 2002), such as animal health (e.g. copper) 

problems. 

An early observation of operations at the NZCPA indicated that the new data economy was 

disrupting their science process, and the classical science method was not the most suitable 

approach for the data-rich work they were undertaking. 

 

‘Disrupting’ the science process 

So what of the disruption? In the new data economy data has moved from a scarce commodity 

appearing late in the science process to upstream and superabundant (see Figure 3). The high-

resolution, georeferenced data means that extrapolation is no longer an issue; we have 

hundreds of layers of data from every location. One data collection event not only provides 

data used to predict levels of nutrients related to growth, but the data carries so much 

information that it can be re-used to answer new research questions. This is rare in traditional 

agricultural science, which is accustomed to using data that is limited in both quantity and 

quality.   

 

Figure 3: Disrupting the science process. 

 

In the new data economy algorithms are used to refine the data into the valuable information 

but a cyclical, iterative approach may be required, and you may encounter unexpected science 

along the way. Data exploration is difficult because we are not always sure what we‟re 

looking for which is why it is important to use visualisation and questions that will guide the 

initial exploration to make sense of what is it that this data can tell us (Pfister & Blitzstein, 

2013).  
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Big data ≠ big knowledge 

A key challenge with big data technology such as HSI is that the value model does not 

emerge fully-formed from data itself; they are simply inputs to a production process that 

depends on human insight (Huberty, 2015). “Making sense” of massive amounts of highly 

variable and versatile data will require data exploration (Sonka & IFAMR, 2014), which may 

involve an iterative, cyclical process where the science-making team is not always sure what 

they are looking for (Pfister & Blitzstein, 2013).  This approach is a far cry from the linear 

classical science traditionally promoted for agricultural science. Translating the data into 

valuable knowledge will require a multidisciplinary approach. There is also evidence that the 

science method traditionally used by specialist teams in agricultural research does not always 

meet the needs of cross-disciplinary research (Alrøe & Kristensen, 2002); this potentially 

limits the value that could be extracted from versatile, multi-layered data produced in 

superabundance by hyperspectral sensors. This conflicts with the way many Universities and 

research organisations fund and structure their science teams. Continuing to work in specialist 

teams may result in a widening gap between information and knowledge and there is a risk of 

missing out on what we call surplus science. 

 

The story of copper 

The lead author of this paper is embedded in the NZCPA undertaking a longitudinal study of 

precision agriculture researchers in a data-rich science-making environment. NZCPA is 

working on a major project, a Primary Growth Partnership called “Pioneering to Precision” 

funded by Ravensdown and the Ministry of Primary Industries. The researchers are using 

airborne HI to predict nutrient concentrations in plant tissue from the air to guide and inform 

fertiliser decision making (Grafton & Yule, 2015; MPI, 2014).  

 

The project involved flying the AisaFENIX over eight test farms, with over 4,000 tissue and 

soil samples being sent to a laboratory for calibration. Data was then explored to see if 

relationships between the hyperspectral data and wet chemistry calibration samples could be 

found for the major pasture nutrients. Models were subsequently created from these 

relationships. A question arose during the process as to whether other minerals such as copper 

could be modelled from the data. In the classical science context, this question would usually 

be viewed as „project creep‟ or as a whole new research project because another data 

collection process would be needed to provide the data needed to answer the new research 

question.  The beauty of hyperspectral data is that the data from the original project can be re-

used to answer new research questions (see Figure 4).  

 

Using the original HI data, and calibrating using field measurements taken with the ASD 

FieldSpec® Pro spectrometer, and samples from the laboratory, Dr Rajasheker Pullanagari 

from NZCPA modelled the relationship to an acceptable level of confidence and produced a 

data visualisation of copper concentrations for feedback. The visualisation was presented to 
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test farmers and members of the Ravensdown team as part of a feedback session for the 

original PGP project. Feedback from the session indicated that the farmers valued the copper 

map as they were supplementing stock without fully understanding the copper status of their 

property; importantly, they valued the information from an animal health perspective rather 

than a plant health perspective. 

 

Figure 4: The iterative, cyclical science process used to generate additional value from a hyperspectral imaging 

project (surplus science) 

 

After receiving the positive feedback, Dr Miles Grafton from NZCPA contacted his Massey 

colleague, Dr Rene Corner from Massey University‟s animal health team to see if she was 

interested in the findings and to see if she would like to collaborate, which she did.  Dr Corner 

provided invaluable insight into copper deficiencies in animal health and proposed a third 

research question which meant the data was re-used yet again, this time to investigate if an 

antagonistic relationship between copper and molybdenum in the data could be found, which 

they duly did. In the end, the original HI data was used to answer three important and 

valuable research questions. It is unlikely that this additional value would have been realised 

from the data collection if a classical science process had been followed. It also highlighted 

the benefit of having a multidisciplinary team (or access to experts from other disciplines), 

who can view and shed light on new findings. 



7 

Conclusion 

Hyperspectral sensing and imaging offers a unique opportunity to revolutionise precision 

agriculture; however a key challenge lies in extracting value from the data.  An important 

characteristic of HSI data is that is versatile, superabundant and arrives early in the science 

process. The observations of the NZCPA science team indicate that this new data economy is 

not ideally suited to the classical science model, which is designed to extract an answer to a 

singular question from scarce data sets that receive data late in the science process. The centre 

has adapted their science method to follow a more iterative, cyclical process, and have utilised 

input from end-users and researchers from other disciplines to identify new opportunities and 

refine unexpected value from versatile data sets. 
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