Publications of Robert McLachlan
1984
H. Barr, M. A. Grant, and R. I. McLachlan, Proving and development of geothermal fields -- risk, strategy and economics, Applied Mathematics Division Report 116, Department of Scientific and Industrial Research, Wellington, New Zealand, 1984
1987
S. L. Braunstein and R. I. McLachlan, Generalized squeezing , Phys. Rev. A 35(4) (1987), 1659-1667.
1990
N. D. Malmuth, C. C. Wu, H. Jafroudi, R. I. McLachlan, J. D. Cole, and R. Sahu, Asymptotic theory of transonic wind tunnel wall interference , Arnold Engineering Development Center report SC5413.FR., 1990.
R. I. McLachlan, Separated viscous flows via multigrid , Ph.D. thesis, Caltech (1990).
1991
R. I. McLachlan, A steady separated viscous corner flow , J. Fluid Mech. 231 (1991), 1-34.
R. I. McLachlan, The boundary layer on a finite flat plate , Phys. Fluids A 3(1) (1991), 341-438.
1992
R. I. McLachlan, On visualizing the four-dimensional rigid body , Program in Applied Mathematics Report 141, U. Colorado at Boulder, 1992.
R. I. McLachlan and P. Atela, The accuracy of symplectic integrators , Nonlinearity 5 (1992), 541-562.
1993
R. I. McLachlan, Multigrid solution of the Navier-Stokes equations at high Reynolds numbers, Program in Applied Mathematics report 167, U. Colorado at Boulder, 1993.
P. Atela and R. I. McLachlan, A note on the charged isosceles three-body problem , Proc. Int. Conf. Diff. Eqs. EQUADIFF 91 pp. 292-297, C. Perello, C. Simo, and J. Sola-Morales, eds., World Scientific, Singapore, 1993.
N. D. Malmuth, H. Jafroudi, C. C. Wu, R. I. McLachlan, and J. D. Cole, Asymptotic methods for the prediction of transonic wind-tunnel wall interference, AIAA J. 31(5) (1993), 911-918.
R. I. McLachlan, Integrable four-dimensional symplectic maps of standard type , Phys. Lett. A. 173(3) (1993), 211-214.
R. I. McLachlan, Explicit symplectic splitting methods applied to PDE's , Proc. AMS-SIAM Conf. Exploiting Symmetry in Applied Mathematics, Lects. Appl. Math. 29, AMS, 1993, pp. 325-337.
R. I. McLachlan, Explicit Lie-Poisson integration and the Euler equations , Phys. Rev. Lett. 71 (1993), 3043-3046.
1994
R. I. McLachlan, A gallery of constant-negative-curvature surfaces , The Mathematical Intelligencer 16(4) (1994), 31-37.
R. I. McLachlan, Symplectic integration of Hamiltonian wave equations , Numer. Math. 66 (1994) 465-492
R. I. McLachlan, The world of symplectic space , New Scientist, 19 March 1994, 32-35.
R. I. McLachlan and H. Segur, A note on the motion of surfaces , Phys. Lett. A 194(3) (1994), 165-172.
P. Atela and R. I. McLachlan, Global behaviour of the charged isosceles three-body problem, Int. J. Bifurcations Chaos 4(4) (1994), 865-884.
1995
R. I. McLachlan and C. Scovel, Equivariant constrained symplectic integration , J. Nonlinear Sci. 5 (1995), 233-256.
R. I. McLachlan, On the numerical integration of ordinary differential equations by symmetric composition methods , SIAM J. Sci. Comp. 16, (1995), 151-168.
R. I. McLachlan, Comment on "Poisson schemes for Hamiltonian systems on Poisson manifolds" , Comp. Math. App. 29(3) (1995), 1.
R. I. McLachlan, Composition methods in the presence of small parameters , BIT 35(2) (1995), 258-268.
1996
R. I. McLachlan, More on symplectic correctors , in Integration Algorithms and Classical Mechanics, J.E. Marsden, G.W. Patrick, and W.F. Shadwick, eds., AMS, 1996, pp. 141-149.
R. I. McLachlan and C. Scovel, Open problems in symplectic integration , in Integration Algorithms and Classical Mechanics, J.E. Marsden, G.W. Patrick, and W.F. Shadwick, eds., AMS, 1996, pp. 151-180.
1997
R. I. McLachlan and G. R. W. Quispel, Generating functions for dynamical systems with symmetries, integrals, and differential invariants , Physica D 112 (1,2) (1997), 298-309.
R. I. McLachlan and S. Gray, Optimal stability polynomials for splitting methods, with application to the time-dependent Schrodinger equation , Appl. Numer. Anal. 25 (1997), 275-286.
A. Dullweber, B. Leimkuhler, and R. I. McLachlan, Split-Hamiltonian methods for rigid body molecular dynamics , J. Chem. Phys. 107(5) (1997), 5840-5851.
R. I. McLachlan, I. Szunyogh, and V. Zeitlin, Hamiltonian finite-dimensional models of baroclinic instability , Phys. Lett. A 229(5) (1997), 299-306.
1998
R. I. McLachlan, G. R. W. Quispel, and G. S. Turner, Numerical integrators that preserve symmetries and reversing symmetries , SIAM J. Numer. Anal. 35 (1998), 586-599.
F. Dupont, R. I. McLachlan, and V. Zeitlin, On a possible mechanism of anomalous diffusion by Rossby waves , Phys. Fluids 10(12) (1998), 3185-3193.
R. I. McLachlan, G. R. W. Quispel, and N. Robidoux, Unified approach to Hamiltonian systems, Poisson systems, gradient systems, and systems with Lyapunov functions or first integrals , Phys. Rev. Lett. 81 (1998), 2399-2403.
1999
F. Dupont, R. I. McLachlan, and V. Zeitlin, On a possible mechanism of anomalous diffusion in geophysical turbulence , Fundamental problematic issues in turbulence (Monte Verita, 1998), pp. 203-209, Trends Math., Birkhauser, Basel, 1999.
R. I. McLachlan, G. R. W. Quispel, and N. Robidoux, Geometric integration using discrete gradients , Phil. Trans. Roy. Soc. A 357 (1999), 1021-1046.
A. Iserles, R. I. McLachlan, and A. Zanna, Approximately preserving symmetries in the numerical integration of ordinary differential equations , Eur. J. Appl. Math. 10(5) (1999), 419-445.
R. I. McLachlan, Area preservation in computational fluid dynamics , Phys. Lett. A 264 (1999), 36-44.
2000
R. I. McLachlan and G. R. W. Quispel, Numerical integrators that contract volume , Appl. Numer. Math. 34 (2000), 253-260.
R. I. McLachlan and N. Robidoux, Antisymmetry, pseudospectral methods, and conservative PDEs , EQUADIFF 99, B. Fiedler, K. Groger, and J. Sprekels, eds., World Scientific, 2000, pp. 994-999.
2001
R. I. McLachlan and G. R. W. Quispel, Six Lectures on Geometric Integration , in Foundations of Computational Mathematics pages 155-210, ed. R. DeVore, A. Iserles, E. Suli, Cambridge University Press, Cambridge, 2001.
R. I. McLachlan and G. R. W. Quispel, What kinds of dynamics are there? Lie pseudogroups, dynamical systems, and geometric integration , Nonlinearity 14 (2001), 1689-1705.
R. I. McLachlan and M. Perlmutter, Conformal Hamiltonian systems , J. Geom. Phys. 39(4) (2001), 276-300.
P. Kathirgamanathan, R. McKibbin and R. I. McLachlan, Source term estimation of pollution from an instantaneous point source , in MODSIM 2001, International Congress on Modelling and Simulation pp. 1013-1018, F. Ghassemi, P. Whetton, R. Little, and M. Littleboy, eds., Modelling and Simulation Society of Australia and New Zealand, Inc., 2001.
2002
R. I. McLachlan, Families of high-order composition methods , Numerical Algorithms 31, (2002), 233-246.
R. I. McLachlan and G. R. W. Quispel, Splitting methods , Acta Numerica 11 (2002), 341-434.
P. Rynhart, R. McLachlan, R. McKibbin, and J. R. Jones, Mathematical modelling of granulation: Static and dynamic liquid bridges , Proceedings of the Fourth World Congress on Particle Technology (WCPT4), Sydney, 2002.
2003
O. Gascuel, M. D. Hendy, A. Jean-Marie and R. McLachlan, The combinatorics of tandem duplication trees , Syst. Biol. 52 (2003), 110-118.
R. I. McLachlan, M. Perlmutter, and G. R. W. Quispel, Lie group foliations: Dynamical systems and integrators , Future Generation Computer Systems, 19 (2003) 1207-1219.
R. I. McLachlan, The emerging science of geometric integration , New Zealand Science Review, 2003. (Mac Word file ).
R. I. McLachlan and G. R. W. Quispel, Geometric integration of conservative polynomial ODEs , Appl. Numer. Math. 45 (2003), 411-418.
R. I. McLachlan and B. N. Ryland, The algebraic entropy of classical mechanics , J. Math. Phys. 44 (2003), 3071-3087.
R. I. McLachlan, Spatial discretization of PDEs with integrals , IMA J. Numer. Anal. 23 (2003), 645-664.
A. Kitson, R. I. McLachlan, and N. Robidoux, Skew-adjoint finite difference methods on nonunform grids , New Zealand J. Math., 32 (2003) 139-159.
Book review of Geometric Numerical Integration by E Hairer, Ch Lubich, and G Wanner, SIAM Featured Review 45 (2003), 817-821.
P Kathirgamanathan, R McKibbin, and R I McLachlan (2003). Inverse modelling for identifying the origin and release rate of atmospheric pollution: An optimisation approach . in MODSIM 2003: International Congress on Modelling and Simulation: Proceedings (Volume 1), Modelling and Simulation Society of Australia and New Zealand, Canberra, ACT. pp. 64--69.
P R Rynhart, R I McLachlan, J R Jones, and R McKibbin, R. (2003). Solution of the Young-Laplace equation for three particles . Q.D. Nguyen, P.J. Ashman, K. Quast, & N. Swain (Eds.) in CHEMECA 2003: 31st Australasian Chemical Engineering Conference: Proceedings, University of Adelaide, Institution of Engineers, Adelaide, SA.
2004
U. Ascher and R. I. McLachlan, Multisymplectic box schemes and the Korteweg-de Vries equation , Appl. Numer. Math. 48 (2004), 255-269.
R. I. McLachlan and G. R. W. Quispel, Explicit geometric integration of polynomial vector fields , BIT 44 (2004), 515-538.
R. I. McLachlan, M. Perlmutter, and G. R. W. Quispel, On the nonlinear stability of symplectic integrators , BIT 44 (2004), 99-117.
R. I. McLachlan and M. Perlmutter, Energy drift in reversible time integration , J. Phys. A 37(45) (2004), L593-L598.
2005
R. I. McLachlan and A. Zanna, The discrete Moser-Veselov algorithm for the free rigid body, revisited , Foundations of Comput. Math. 5 (2005), 87-123.
U. Ascher and R. I. McLachlan, On symplectic and multisymplectic schemes for the KdV equations , J. Sci. Comput., 25 (1) (2005) 83-104.
2006
I G Mason, R I McLachlan and D T Gerard, A double exponential model for biochemical oxygen demand , Bioresource Technology 97 (2) (2006), 273-282.
R I McLachlan and G R W Quispel, Geometric integrators for ODEs , J. Phys. A 39(19) 2006, 5251-5286.
R McLachlan and S Marsland, Kelvin--Helmholtz instability of momentum sheets in the Euler equations for planar diffeomorphisms , SIAM J. Appl. Dyn. Sys. 5 (2006), 726--758.
R I McLachlan and D R O'Neale, Geometric integration for a two-spin system , J. Phys. A: Math. Gen. 39 (2006) L447-L452.
R I McLachlan and M Perlmutter, Integrators for nonholonomic mechanical systems , J Nonlinear Sci 16(4) (2006), 283-328.
R. I. McLachlan and S. R. Marsland, Discrete mechanics and optimal control for image registration , ANZIAM J., 2006, vol 48, Electronic supplement 2006--2007, pp. C1-C16.
G R W Quispel and R I McLachlan, eds., J Phys A, Special issue on Geometric Numerical Integration , 39(19) (2006), 5251--5652. R. I. McLachlan, Integration and applications of generalized Euler equations. In E~Hairer, editor, Geometric Numerical Integration, Oberwolfach Report 14/2006, pages 68--70, 2006.
2007
R I McLachlan, A new implementation of symplectic Runge-Kutta methods , SIAM J Sci Comput 29(4) 2007, 1637-1649.
R. I. McLachlan and S. R. Marsland, N-particle dynamics of the Euler equations for planar diffeomorphisms . Dynamical Systems 22(3) 2007, 269-290.
Ryland B.N., McLachlan, R.I., and Frank, J., On multisymplecticity of partitioned Runge-Kutta and splitting methods , Int J Comput Math , 84(6) 2007, 847-869.
S Marsland and RI McLachlan, A Hamiltonian particle method for diffeomorphic image registration . In Proceedings of Information Processing in Medical Images , volume 4548 of Lecture Notes in Computer Science , pages 396-407. Springer, 2007.
2008
Ryland B.N., McLachlan R.I., On multisymplecticity of partitioned Runge-Kutta methods , SIAM J. Sci. Comput. 30(3) 2008, 1318-1340.
Hairer E, McLachlan, R I, Razakarivony A, Achieving Brouwer's law with implicit Runge-Kutta methods , BIT 48(2) 2008, 231-244.
McLachlan, R.I., H Z Munthe-Kaas, G R W Quispel, and A Zanna, Explicit volume-preserving splitting methods for linear and quadratic divergence-free vector fields , Foundations Comput. Math. 8 2008, 335-355.
E Celledoni, R I McLachlan, D I McLaren, B Owren, G R W Quispel, and W Wright, Energy-preserving methods and B-series , Proc. 21 st Nordic Seminar on Computational Mathematics , 2008, 4pp.
2009
E Hairer, R I McLachlan, and R D Skeel, On energy behaviour of the modified Takahashi-Imada method , Mathematical Modelling and Numerical Analysis 43 (2009) 631-644.
E Celledoni, R I McLachlan, D I McLaren, B Owren, G R W Quispel, and W Wright, Energy-preserving Runge-Kutta methods , Mathematical Modelling and Numerical Analysis 43 (2009) 645-649.
R I McLachlan, G R W Quispel, and P S P Tse, Linearization-preserving self-adjoint and symplectic integrators , BIT 49(1) (2009), 177-197.
R I McLachlan, The structure of a set of vector fields on Poisson manifolds , J. Phys. A: Math. Theor. 42 (2009) 142001.
R I McLachlan and X Zhang, Well-posedness of modified Camassa-Holm equations , J. Differential Equations 246 (2009) 3241-3259.
A J Elvin, C R Laing, R I McLachlan, and M G Roberts, Exploiting the Hamiltonian structure of a neural field model , Physica D (2009), in press.
D R O'Neale and R I McLachlan, Reconsidering trigonometric integrators , ANZIAM Journal 50 (2009), 3241-3259.
2010
D R J O'Neale and R I McLachlan, Preservation and destruction of periodic orbits by symplectic integrators , Numerical Algorithms 53 (2010), 343-362.
E Celledoni, R I McLachlan, B Owren, and G R W Quispel, On conjugate B-series and their geometric structure , Journal of Numerical Analysis, Industrial and Applied Mathematics 5 (2010), 343-362.
E Celledoni, R I McLachlan, B Owren, and G R W Quispel, Energy-preserving integrators and the structure of B-series , Foundations of Computational Mathematics, 10 (2010) 673-693.
K Modin, M Perlmutter, S Marsland, R McLachlan, Geodesics on Lie groups: Euler equations and totally geodesic subgroups , Res. Lett. Inf. Math. Sci., Massey University 14 (2010), 79-106.
2011
R I McLachlan, Y Sun, and P S P Tse, Linear stability of partitioned Runge-Kutta methods , SIAM J Numer. Anal., 49 (2011), 232-263.
K Modin, M Perlmutter, S R Marsland, and R I McLachlan, On Euler-Arnold equations and totally geodesic subgroups, J Geom Phys 61 (2011), 1446-1461.
R I McLachlan and X Y Zhang, Asymptotic profiles for modified Camassa-Holm equations , SIAM J Appl. Dyn. Sys. 10 (2011), 452-468.
S Marsland, R McLachlan, K Modin, and M Perlmutter, On a geodesic equation for planar conformal template matching , Proc. Third Int. Workshop Mathematical Foundations of Computational Anatomy - Geometrical and Statistical Methods for Modelling Biological Shape Variability (2011), 52-63.
2012
S Marsland, R I McLachlan, K Modin, and M Perlmutter, Geodesic warps by conformal mappings , International Journal of Computer Vision, Vision (2012), 1-11, DOI 10.1007/s11263-012-0584-x.
E Celledoni, V Grimm, R I McLachlan, D I McLaren, D R J O'Neale, B Owren, and G R W Quispel, Preserving energy resp. dissipation in numerical PDEs using the "Average Vector Field" method , J Comput Phys, 231 (2012), 6770-6789.
2013
E Celledoni, R I McLachlan, G R W Quispel, and B Owren, Geometric properties of Kahan's method , J. Phys. A 46(2) (2013), 025201
R I McLachlan, K Modin, O Verdier, and M Wilkins, Symplectic integrators for index one constraints , SIAM J Sci Comput 35(5) (2013), A2150-A2162.
2014
R I McLachlan and G R W Quispel, Discrete gradient methods have an energy conservation law , Disc. Cont. Dyn. S. A, 34(3) (2014), 1099-1104. doi:10.3934/dcds.2014.34.1099
S Marsland, R McLachlan, K Modin, and M Perlmutter,
On conformal variational problems and free boundary continua ,
J. Phys. A 47 (2014) 145204.
R I McLachlan, K Modin, and O Verdier, Collective symplectic integrators , Nonlinearity 27(6) (2014), 1525-1542.
R I McLachlan, K Modin, and O Verdier, Collective Lie-Poisson integrators on R^3 , IMA J. Numer. Anal. (2014).
R I McLachlan and A Stern, Modified trigonometric integrators , SIAM J. Numer. Anal. 52(3) (2014), 1378-1397.
R I McLachlan, K Modin, O Verdier, and M Wilkins, Geometric generalisations of SHAKE and RATTLE , Foundations of Computational Mathematics 14 (2014), 339-370.
R I McLachlan, K Modin, and O Verdier, Symplectic integrators for spin systems , Phys. Rev. E 89(6), 061301, 2014.
R I McLachlan, B N Ryland, and Y Sun, High order multisymplectic Runge-Kutta methods , SIAM J. Sci. Comput. 36(5), A2199-A2226, 2014.
E Celledoni, R I McLachlan, D I McLaren, B Owren, and G R W Quispel, Integrability properties of Kahan's method , J Phys. A 47(36) (2014) 365202.
2015
R I McLachlan and M C Wilkins, The multisymplectic diamond scheme , SIAM J Sci. Comput. 37(1) (2015) A369-A390.
R I McLachlan, K Modin, H Munthe-Kaas, and K Modin, B-series are exactly the affine equivariant methods , Numer. Math. 133 (2016), 599-622.
E Celledoni, R I McLachlan, D I McLaren, B Owren, and G R W Quispel, Discretization of polynomial vector fields by polarization Proc. Roy. Soc. A 471: 20150390.
2016
Geometry of discrete-time spin systems , J. Nonlinear Sci. 26(5) (2016), 1507-1523.
S Marsland and R I McLachlan, Möbius invariants of shapes and images , Symmetry, Integrability and Geometry: Methods and Applications, SIGMA 12 (2016), 080.
F McDonald, R I McLachlan, B E Moore, and G R W Quispel, Travelling wave solutions of multisymplectic discretizations of semi-linear wave equations J. Diff. Eq. Appl. 22(7) (2016), 913-940.
R I McLachlan, K Modin, and O Verdier, Symmetry reduction for central force problems Eur. J. Phys. 37 (5) (2016) 055003.
L M Symes, R I McLachlan, and P B Blakie, Efficient and accurate methods for solving the time-dependent spin-1 Gross-Pitaevskii equation Phys. Rev. E 93(5) (2016) 053309.
2017
R I McLachlan, K Modin, and O Verdier, A minimal-variable symplectic integrator on spheres Math. Comput. 86 (2017) 2325-2344.
V Grimm, RI McLachlan, D McLaren, GRW Quispel, CB Schönlieb,
The use of discrete gradient methods for total variation type regularization problems in image processing,
Journal of Physics A: Mathematical and Theoretical 50 (29) 2017, 295201
R I McLachlan, K Modin, H Munthe-Kaas, O Verdier,
What are Butcher series, really? The story of rooted trees and numerical methods for evolution equations ,
Asia-Pacific Mathematics Newsletter 7 (1) 2017, 1-11.
Two classes of quadratic vector fields for which the Kahan discretization is integrable ,
E Celledoni, RI McLachlan, DI McLaren, B Owren, GRW Quispel,
MI Lecture Notes of Institute of Mathematics for Industry, 74 (2017) 60-62.
Preprints
R. I. McLachlan and N. Robidoux, Antisymmetry, pseudospectral methods, weighted residual discretizations, and energy conserving partial differential equations .
R McLachlan and X Zhang, Dynamics of the generalized Euler equations on Virasoro groups .