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a b s t r a c t 

Road detection is one of the key challenges for autonomous vehicles. Two kinds of sen- 

sors are commonly used for road detection: cameras and LIDARs. However, each of them 

suffers from some inherent drawbacks. Thus, sensor fusion is commonly used to combine 

the merits of these two kinds of sensors. Nevertheless, current sensor fusion methods are 

dominated by either cameras or LIDARs rather than making the best of both. In this pa- 

per, we extend the conditional random field (CRF) model and propose a novel hybrid CRF 

model to fuse the information from camera and LIDAR. After aligning the LIDAR points 

and pixels, we take the labels (either road or background) of the pixels and LIDAR points 

as random variables and infer the labels via minimization of a hybrid energy function. 

Boosted decision tree classifiers are learned to predict the unary potentials of both the 

pixels and LIDAR points. The pairwise potentials in the hybrid model encode (i) the con- 

textual consistency in the image, (ii) the contextual consistency in the point cloud, and 

(iii) the cross-modal consistency between the aligned pixels and LIDAR points. This model 

integrates the information from the two sensors in a probabilistic way and makes good 

use of both sensors. The hybrid CRF model can be optimized efficiently with graph cuts 

to get road areas. Extensive experiments have been conducted on the KITTI-ROAD bench- 

mark dataset and the experimental results show that the proposed method outperforms 

the current methods. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

Road detection is a fundamental research topic in autonomous vehicles and has been studied for decades [11] . For au-

tonomous vehicles, stable and accurate road detection is a prerequisite. As there are different kinds of roads, such as high-

ways, urban roads and country roads, with different features, the approaches to detect them are different. In well painted

highways, road detection can be replaced by lane detection, which is considered to be much easier. However, it is much

more challenging to detect normal urban roads for many reasons such as the variations in road materials from segment to

segment, the similarities of textures and heights between the road areas and non-road areas, the changes of illumination

and weather and so on. 
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To achieve accurate and stable road detection, many algorithms based on different kinds of sensors have been developed.

The most commonly used sensors are monocular cameras [4,15] and LIght Detection And Rangings (LIDARs) [8] which can

acquire different kinds of information for road detection. Monocular vision captures the perspective projection of the scene

and then the dense colors and textures can be used to group the pixels or super-pixels into road and background areas.

However, monocular vision often suffers from the changes of illumination and weather, and it cannot capture accurate 3D

information. Compared to vision, a LIDAR is an active sensor which works independently of the ambient light and it can

measure the distances to objects accurately. However, in the point clouds captured by a LIDAR, neither color nor texture

information is available and the points are rather sparse. 

To overcome the inherent drawbacks and combine the merits of different kinds of sensors, multi-modal sensor fusion

has been widely used [31,33,43,50,53] . For road detection, several camera-LIDAR fusion methods have been proposed. How-

ever, most of them are dominated by either cameras or LIDARs and fail to fully exploit the advantages of both sensors. For

example, in [43] , after projecting the LIDAR point cloud onto the image, the feature used for obstacle classification is dom-

inated by the height information of the LIDAR points while the pixel information is ignored. In [21] , the information from

the images and LIDAR point clouds is utilized separately in a stage-wise fashion. The LIDAR point clouds are only used for

ground seed extraction, while the following road detection and segmentation are dominated by the image. In [54] , fusion is

performed on the feature and region levels, resulting in a coarse level fusion. All these methods fail to fuse the image and

LIDAR in fine granularity and through a joint model. This work aims to fill this gap. Aside from the multi-modal information,

another kind of information that is crucial for improving the performance is the contextual information in each modality.

Considering the strength of conditional random fields (CRF) in modeling contextual information [44] , we extend CRF to a

multi-modal setting and propose a novel hybrid-CRF-based camera-LIDAR fusion method to improve the performance of

road detection. By formulating the road detection as a binary labeling problem, the labels (either road or background) of

the pixels and LIDAR points are taken as random variables and a hybrid CRF model is built to solve the multi-modal label-

ing problem. The proposed method utilizes the learned boosted decision tree classifiers to derive the unary potentials of

the pixels and LIDAR points. The neighboring smooth prior of the pixels and LIDAR points, together with the consistency

constraint between the aligned LIDAR points and pixels are modeled via the pairwise potentials. This model integrates the

information from the two sensors probabilistically and the information from both sensors are well exploited. The hybrid

CRF model can be optimized efficiently by graph cuts [23] to get road areas. Experiments conducted on the KITTI-ROAD

benchmark dataset [14] demonstrate that the proposed hybrid CRF model is effective in fusing multi-modal information and

the results of road detection are better compared to that of the current existing methods. 

The main contributions of this paper include: (i) A novel hybrid CRF model is proposed to fuse the image and LIDAR

point cloud, in which the contextual consistency of the image and LIDAR point cloud, together with the constraint of cross-

modal consistency is jointly modeled probabilistically, and (ii) the proposed sensor fusion framework is applied to urban

road detection and our method achieves good performance on the KITTI-ROAD benchmark dataset [14] . The results of our

method on the UM subset rank first on the leaderboard [1] apart from the deep-learning-based ones, which usually rely on

models pre-trained on extra data for initialization and modern GPUs for fast computing. 

The rest of this paper is organized as follows. Section 2 reviews the work on road detection. Section 3 shows how the

LIDAR points and the images are registered. In Section 4 , we first introduce the CRF-based labeling framework, then we

provide the detailed information about the proposed hybrid CRF model. The training of the pixel and LIDAR point classifiers

is described in Section 5 , along with the feature extraction. The experimental results tested on the KITTI-ROAD benchmark

dataset are given in Section 6 . Finally, conclusions and directions for the future work are listed in Section 7 . 

2. Related work 

As a fundamental problem in developing autonomous vehicles, road detection has been extensively studied. Various road

detection systems have been developed based on different kinds of sensors as well as fusion of some sensor types. 

The most frequently used sensor for road detection is the monocular camera [20] . Monocular-vision-based road detection

is usually formulated as a classification problem, i.e., classifying each pixel or super-pixel into either road or background.

Many kinds of machine learning methods have been applied to road detection, such as mixture of Gaussian [10] , support

vector machines [2] , extreme learning machines [30,55] , neural networks [42] , boosting [15] and structured random for-

est [51] . In recent years, many new feature learning methods have been applied to road detection such as slow feature

analysis [15] , sparse coding and dictionary learning [28,29,32,52] , convolutional neural network [3,35] and deep deconvo-

lutional network [37] . Classification-based methods classify each unit independently and do not take the contextual inter-

action into consideration. Therefore, the prediction may be noisy. To solve this problem, conditional random fields (CRF)

[19,41,45,50] are widely used to model the contextual interaction. Generally, CRF-based methods are supposed to get better

performance than simple classification-based methods. However, when the image quality is badly affected by illumination

or weather conditions, these methods may also get poor results. 

LIDAR is another widely used sensor in autonomous vehicles. Various LIDAR-based road detection algorithms have been

proposed and they can be roughly categorized into two groups: regression-based and classification-based algorithms. Based

on the assumption of the continuity of the road area, the regression-based algorithms utilize one dimensional curve fitting

[8,21] or two dimensional surface fitting [5,12] to segment the road. The classification-based algorithms extract features of

the points or grid cells and then classify them based on certain intuitive rules or learning methods, such as elevation map
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analysis [46] , Gaussian Mixture Model [26] and local convexity criterion [38] . Similar to image-based algorithms, Markov

random fields (MRF) can be employed to model the contextual information of the LIDAR points to get locally consistent

results. The random fields can be built on the grid map [17] , the cylindrical grid map [7] or the neighboring graph of points

[40] . In a nutshell, LIDAR-based road detection algorithms analyze the 3D information of the point cloud to get the obstacle-

free area as the road. However, in some scenes, the roadside areas have no significant differences in heights with the road

areas and then these methods may fail. 

Since camera and LIDAR both have some drawbacks, sensor fusion becomes a natural solution to overcome the inherent

defects of each single sensing modality. Recently, camera-LIDAR fusion has been applied to road detection. Shinzato et al.

[43] proposed a simple and efficient sensor fusion method to detect the road terrain. This method firstly projects the LIDAR

points onto the image plane and constructs a graph by Delaunay triangulation. Then, the nodes are classified into obstacles

and non-obstacles. Finally, multiple free space detections are employed to get the dense road area in the image plane.

However, this method did not actually utilize any pixel information. It only used the cross calibration parameters to get the

LIDAR points projected onto the image plane. Hu et al. [21] proposed a more intuitive method to fuse the information from

LIDAR and camera. Plane estimation was employed to extract the ground points in a LIDAR point cloud. These points were

projected onto the image for learning a Gaussian model of the illumination invariant image feature by which the pixels were

classified. This method used the LIDAR points to generate the seeds for image-based segmentation in a stage-wise fashion.

In other words, in the first stage, only the LIDAR point cloud was used to extract the seed ground points. Then, in the

second stage, the image was segmented according to the model learned from the seed pixels, while the LIDAR point cloud

was totally discarded. Compared to the stage-wise method, we argue that joint modeling the information of both camera

and LIDAR at the same time via the CRF framework will be more beneficial. 

Although CRF has been widely used in image labeling and LIDAR point cloud labeling, the ability of CRF to fuse the

information from multiple sensors is seldom investigated. In [54] , image and LIDAR point cloud fusion was employed for

semantic segmentation. However, the fusion was done in the unary classification stage and CRF is only used as a post-

process of super-pixels labeling. In [22] , LIDAR point cloud was firstly clustered to generate object hypotheses. Then CRF was

employed to integrate the object prior and the spatial constraints for the segmentation of the pixels. In [50] , the authors

proposed learning classifiers for both image and LIDAR point cloud and then using CRF to integrate the observations from the

camera and LIDAR. However, in these works, the CRF model is dominated by the image, and the LIDAR points are only used

as an additional observation or constraint of the registered pixels to correct the unary potentials. This paper extends their

work to explicitly model the contextual interaction between the neighboring LIDAR points, and the consistency constraint

between the registered pixels and LIDAR points within a novel hybrid CRF framework. Our method integrates the image and

LIDAR point cloud in a totally probabilistic way and thus the information from both sensors is well exploited and deeply

fused. 

3. Image and LIDAR point cloud alignment 

In this section, we give a brief introduction to the alignment of image and LIDAR point cloud. As presented in [16] , the

Velodyne HDL-64E LIDAR and a camera are mounted on the roof of a vehicle and they are synchronized by a hardware

trigger. Once the rolling LIDAR is facing forward, the camera gets triggered. The camera and LIDAR are cross-calibrated so

that the point cloud can be aligned with the image by projecting the LIDAR points onto the image plane [16] . Denoting a

3D point in the LIDAR coordinate by p = [ x y z 1] T , it is first transformed to the camera coordinate by 

p c = R rect T 

cam 

v elo p, (1)

where T cam 

v elo is the transformation matrix from the LIDAR coordinate to the camera coordinate, and R rect is the rectifying

rotation matrix. 

After this step, points with negative Z -value are removed. Then the remaining points can be projected onto the image

plane with the projection matrix P rect by 

[ u 

′ v ′ w ] T = P rect [ x c y c z c 1] T . (2)

Then the projected pixel coordinates of the LIDAR point p can be obtained by [ u, v ] = [ u 
′ 

w 

, v 
′ 

w 

] . Note that the points that

project out of the field of view (FOV) of the image are also discarded. Fig. 1 shows a point cloud captured by LIDAR and an

image captured by camera in a typical road scene and the alignment of the image and point cloud. From the tree trunks in

the fused view, the image and the LIDAR point cloud can be seen to be well aligned. 

4. Hybrid-CRF-based camera-LIDAR fusion for road detection 

In this paper, road detection is formulated as a binary labeling problem, i.e., labeling the perception data as either road

(1) or background (0). The CRF-based labeling framework is adopted. The proposed method is a multi-sensor extension to

the classical pairwise CRF. In this section, we first briefly introduce the CRF-based labeling framework. Then we show how

to fuse the information of the image and LIDAR point cloud deeply with a novel hybrid CRF model. 
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Fig. 1. On the left is a LIDAR point cloud (only the data overlapped with the FOV of the image are shown, grayscaled by height). On the top right is the 

corresponding image captured by camera. On the bottom right is the result of image and LIDAR point cloud fusion (note the well aligned tree trunks). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. CRF-based labeling 

Conditional Random Field (CRF) is a kind of probabilistic graphical model which is widely used for solving labeling

problems. Formally, let X = { X 1 , X 2 , . . . X N } be the discrete random variables to be inferred from observation Y . Each of the

random variables can take a label from a predefined set L = { l 1 , l 2 , . . . l k } . Any possible assignment of all the random vari-

ables is called a labeling and is denoted as x which can take values from L = L 

N . The task is to infer the most probable

labeling given the observation: x ∗ = max x ∈ L P r(x | Y ) . 

A CRF is a probabilistic graphical model defined over G = (V, E ) , where V = { X 1 , X 2 , . . . X N } and E defines the neighbor-

ing or connectivity between the random variables. A clique c ∈ C G is a set of random variables X c which are conditionally

dependent on each other. According to the Hammersley–Clifford theorem [18] , the posterior distribution Pr ( x | Y ) over the

labelings of the CRF is a Gibbs distribution and can be written as: 

P r(x | Y ) = 

1 

Z(Y ) 
exp 

( 

−
∑ 

c∈ C G 
ψ c (x c | Y ) 

) 

, (3) 

where ψ c ( x c | Y ) is the potential function defined over the clique x c ; C G is the set of cliques, and Z ( Y ) is the partition function.

Therefore, maximizing the probability Pr ( x | Y ) equals minimizing the Gibbs energy function: 

min 

x 
E( x | Y ) = 

∑ 

c∈ C G 
ψ c (x c | Y ) . (4) 

For notational convenience, the conditioning on Y is dropped in the rest of this paper. 

In computer vision, the mostly used CRF model is the pairwise CRF which only considers the unary and pairwise cliques:

min 

x 
E(x ) = 

∑ 

i ∈V 
ψ i (x i ) + 

∑ 

(i, j) ∈E 
ψ i j (x i , x j ) . (5) 

Using the above CRF-based labeling framework, graphical models in the image and point cloud domains can be built and

the pixels or the LIDAR points can be labeled via model inference. CRF has been successfully applied in various labeling

problems for its ability in modeling contextual interaction. However, each sensing modality has its inherent drawbacks. For

example, image quality can be seriously affected by illumination. As shown in Fig. 9 , the large shadow presented on the

road makes it hard to recognize. Fusing the information from both sensors can overcome the drawbacks of a single sensor

and improve the performance. To exploit the advantage of CRF and sensor fusion, in this paper, the CRF-based labeling

framework is extended to integrate the image and point cloud in a hybrid CRF model. 

4.2. Hybrid CRF with camera-LIDAR fusion 

The details of the proposed hybrid CRF are as follows. After aligning the image and LIDAR point cloud with the method

introduced in Section 3 , we take the labels of the image pixels ( P ) and the LIDAR points ( L ) which project onto the field

of view of the image as random variables. Because the road detection is formulated as a two-class labeling problem, each

random variable can take a value from L = { 0 , 1 } . For the neighboring relationship, three types of edges are considered: (i)

The first is the pixel to pixel edges ( E PP ) which connect a pixel with its 8-neighboring pixels. (ii) The second is the edges

between the neighboring LIDAR points ( E LL ). Practically, either the K -nearest neighbor ( K -NN) approach or the ε-neighbor

approach in the 3D Euclidean space can be used. In this paper, the K -NN approach is adopted with K = 6 . (iii) The last

type ( E PL ) is the cross-modal edges between the aligned LIDAR points and the corresponding pixels, i.e., an edge is added

between each LIDAR point and the pixel which the LIDAR point is projected on. The graphical model is also illustrated in

Fig. 2 . 
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Fig. 2. Illustration of the proposed model. On the top left is the probabilistic output of the point cloud classifier. On the bottom left is the probabilistic 

output of the pixel classifier. On the top right is the fused view of the image and LIDAR point cloud. On the bottom right is the graph structure of the 

hybrid CRF: The green nodes represent the image pixels, the red nodes stand for LIDAR points, and the three kinds of edge E PP (pixel to pixel), E LL (LIDAR 

point to LIDAR point) and E PL (pixel to LIDAR point) are shown in green, red and blue, respectively (See text for details). (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Formally, the energy function to be minimized of the hybrid CRF is modeled as: 

min 

x 
E(x ) = 

E P (x P ) ︷ ︸︸ ︷ ∑ 

i ∈ P 
ψ 

P 
i (x i ) + 

∑ 

(i, j) ∈ E PP 

ψ 

P 
i j (x i , x j ) 

+ γ ·
(∑ 

i ∈ L 
ψ 

L 
i (x i ) + 

∑ 

(i, j) ∈ E LL 

ψ 

L 
i j (x i , x j ) ︸ ︷︷ ︸ 

E L (x L ) 

)

+ 

∑ 

(i, j) ∈ E PL 

ψ 

C 
i j (x i , x j ) . 

(6)

In this hybrid CRF model, there are two sub-CRFs that are built in the image and point cloud domains, respectively. The

sub-energy functions E P and E L are the same as those of the conventional pairwise CRF models, and the strengths of the

two sub-models are balanced by parameter γ . Practically, for the pixel-based sub-CRF model, the framework of Shotton’s

TextonBoost [44] is mostly adopted. In other words, the unary potential takes the output of a learned classifier, and the

pairwise potential takes the pixel contrast sensitive Potts model. In this paper, the unary potential term ψ 

P 
i 
(x i ) takes the

negative log-likelihood predicted by the boosted pixel classifier: 

ψ 

P 
i (x i ) = − log p(x i ) . (7)

The pairwise potential term ψ 

P 
i j 
(x i , x j ) penalizes the neighboring pixels which take different labels as follows: 

ψ 

P 
i j (x i , x j ) = 

{ 

0 , if x i = x j 

λ · 1 

dist (i, j) 
· exp 

(
−‖ I i −I j ‖ 2 

2 β

)
, otherwise . 

(8)

where I i is the vector of the RGB values of the pixel i; β is expectation of ‖ I i − I j ‖ 2 over an image sample, and dist( i, j ) is

the Euclidean distance between the pixel site i and j . Note that the 8-neighborhood system is adopted in this paper, thus

dist( i, j ) equals 1 for horizontally or vertically connected neighbors and 

√ 

2 for diagonally connected ones. λ is the parameter

which controls the strength of the pairwise term. 

For the LIDAR-point-based sub-CRF model, the unary potential of LIDAR points ψ 

L 
i 
(x i ) also takes the negative log-

likelihood predicted by the learned classifier for class x i as: 

ψ 

L 
i (x i ) = − log p′ (x i ) . (9)

For the LIDAR point to LIDAR point pairwise potential, a distance aware Potts model is adopted. The neighboring points with

smaller distance are considered to be more likely to have the same label. In this paper, the potential term is formulated as:

ψ 

L 
i j (x i , x j ) = 

{
0 , if x i = x j 
ζ · exp 

(
−‖ p i − p j ‖ 

2 
)
, otherwise , 

(10)

where p i is the 3D location vector of the LIDAR point i , and ζ is the parameter controlling the strength of enforcing the

close points to take the same labels. 



548 L. Xiao et al. / Information Sciences 432 (2018) 543–558 

Fig. 3. Labeling of the image and point cloud. Top: the manually labeled image. Bottom: the labeling transferred from the image to point cloud. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the pixel to LIDAR point pairwise potential, the basic Potts model is adopted: 

ψ 

C 
i j (x i , x j ) = 

{
0 , if x i = x j 
η, otherwise , 

(11) 

where η is the parameter controlling the strength of constraining the aligned LIDAR point and pixel to take the same labels.

Note that although the camera and LIDAR are temporally synchronized and cross calibrated, there still are minor mis-

matches in registration. However, the mismatches mostly exist near the edge of the objects, while in the flat road areas, the

mismatches are negligible. Besides, the cross-modal potential term imposes a soft constraint on the label consistency of the

aligned LIDAR points and pixels, instead of a hard one. The inference of the overall hybrid CRF model will find a solution

which balances all the potential terms. Therefore, the mismatches existing in registration are acceptable in the proposed

model. 

4.3. Model optimization 

The energy function of the proposed hybrid CRF model is sub-modular and the exact optimal labeling can be inferred ef-

ficiently by graph cuts [23] . In this paper, the fast max-flow algorithm 

1 proposed by Boykov and Kolmogorov [6] is employed

to solve the energy minimization problem. 

5. Unary classifiers training 

In the last section, the details of the proposed hybrid CRF model are introduced. In the model, the unary potentials of

the pixels and LIDAR points are derived from the outputs of the learned classifiers. The performance of the unary classifiers

plays an important role in the whole model. In the literature, various machine learning methods have been applied to road

detection. Boosting is a famous method which is efficient in training and generalizes well to unknown samples [13] . For

these desiderata, boosting is utilized for unary classifiers training. 

5.1. Training samples labeling 

Because images and point clouds are used at the same time, it is necessary to label both the images and the point

clouds. While labeling the images can be rather easy, labeling the point clouds is much more labor-intensive. Considering

that the images and the point clouds have been aligned, it is possible to label the images only and then transfer the label

information to the corresponding point clouds. 

For example, the KITTI-ROAD dataset [14] employed in our experiments is labeled only in the image domain. The afore-

mentioned scheme is used to generate ground-truth labels for the LIDAR points. Fig. 3 shows an example of the labeling

results. 
1 http://vision.csd.uwo.ca/code/maxflow-v3.01.zip . 

http://vision.csd.uwo.ca/code/maxflow-v3.01.zip
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5.2. Feature extraction 

5.2.1. Image features 

The Texture Filter Bank Response, Local Binary Pattern, Dense HOG and Color are extract pixel-wise as the image features.

The Location cues are also included in the features. 

• Texture Filter Bank Response The images are converted to the CIE- Lab color space and then the filter bank is applied to

the gray scale image or each channel of the CIE- Lab image. In practice, a Gaussian filter is applied to each channel while

the horizontal and vertical Gaussian Derivative filters and the Laplacian of Gaussian filter are applied to the gray scale

image. Therefore, for a given scale σ , a 6-dimensional feature vector is obtained for each pixel. In this paper, three scales

are employed and thus an 18-dimensional filter bank response is obtained for each pixel. 

• Local Binary Pattern The 8-connected neighboring local binary pattern feature is extracted to describe the local texture

additionally. 

• Dense HOG The dense Histogram of Oriented Gradients is calculated for 9 directions. 

• Color The RGB channels of each pixel are included in the features. 

• Location The location of the pixel is a useful cue for road detection because the road always appears at the lower part of

the image. Thus, the 2D normalized x and y coordinates of the pixel are also used as part of the features. 

Finally, a 40-dimensional feature vector is obtained for each pixel in the image. The feature vector is then fed into the

classifier to get the probability of being either road or background for each pixel. 

5.2.2. Point cloud features 

For the point cloud features, several commonly used simple geometric features are used: 

• 3D Position The 3D position is represented with the 3D coordinates normalized with the distance. 

• Spectral Features Denoting λ0 < λ1 < λ2 as the eigenvalues of the scatter matrix M estimated from the local neighbor-

hood of point p , { σp = λ0 , σs = λ1 − λ0 , σl = λ2 − λ1 } are extracted as the spectral features [40] . 

• Directional Features Local tangent �
 v t and normal �

 n t vectors are estimated by the principal and least eigenvectors of M

and these vectors are used as the directional features. 

Thus, a 12-dimensional feature vector is obtained for each LIDAR point. 

5.3. Classifier training 

With data labeled and features extracted, classifiers can be trained. In this paper, the boosted decision tree is chosen

as the classifier for both the images and the point clouds. Boosting iteratively learns a strong classifier as a sum of weak

classifiers. In this work, the decision tree classifier with depth d is taken as the weak classifier and AdaBoost is taken as the

boosting algorithm. Denoting the feature vector as v , each weak classifier h i ( v ) maps the feature to a binary prediction. The

learned strong classifier H ( v ) after N iterations of AdaBoost is a weighted sum of the weak classifiers: 

H(v ) = 

N ∑ 

i 

αi · h i (v ) . (12)

The strong classifier outputs a confidence value for each testing feature to take label 1 (road) and label 0 (background): 

c(x | v ) = 

N ∑ 

i 

αi · h i (v ) , x ∈ { 0 , 1 } . (13)

Then the confidence values can be reinterpreted as probabilities by: 

p(x = 1 | v ) = 

c(x = 1 | v ) 
c(x = 1 | v ) + c(x = 0 | v ) (14)

and 

p(x = 0 | v ) = 

c(x = 0 | v ) 
c(x = 1 | v ) + c(x = 0 | v ) . (15)

These probabilities can be used to obtain the unary potentials in the hybrid CRF model. 

6. Experiments 

6.1. Dataset 

In this section, we conduct some experiments on the publicly available KITTI-ROAD dataset [14] to validate the per-

formance of the proposed approach. The KITTI-ROAD dataset contains sensor data captured with car-mounted hardware-

synchronized cameras and Velodyne HDL-64E LIDAR. The cross calibration parameters are also offered to get the LIDAR
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Fig. 4. Classification performance with different numbers of trees and depths. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

point clouds registered with the images. The whole dataset contains about 600 frames of recording captured from five

different days with relatively low traffic density. The data is organized into three sub-categories according to the driving

environments: urban marked (UM), urban marked multi-lane (UMM) and urban unmarked (UU). Each of them consists of

about 100 training frames and 100 testing frames. The annotated images are offered for the training frames, while the

ground-truth for the testing data is not publicly available and one needs to upload the results to get evaluated online. The

annotations contain the road area and the ego-lane. In this paper, only the road detection is studied, while the ego-lane

information is ignored. Two kinds of metrics are offered for evaluation: one is the pixel-based evaluation in the perspective

view and the other is the behavior-based evaluation in the bird’s eye view (BEV). The performance indices include false

positive rate (FPR), false negative rate (FNR), precision (PRE), recall (REC), and F1-score. Considering some methods output

confidence maps, the maximum F1-score (MaxF) and the average precision (AP) [14] are also computed in the official de-

velopment kit [1] . Because our method output binary prediction, MaxF is equal to F1-score and AP is not quite suitable for

evaluating our method. Therefore, in this paper, for the results evaluated in the official way, MaxF and AP are listed for the

sake of consistency with the leaderboard [1] . Otherwise, AP is omitted and F1-score is used instead of MaxF. 

6.2. Parameter settings 

6.2.1. Classifiers 

We first test the performance of the boosted decision tree classifiers. As is known, the weak classifier and the running

rounds of AdaBoost are the two main impact factors of boosting. Taking the pixel-wise classification of the UM subset as an

example, we conduct 2-fold cross validation with different configurations of the decision tree depths and rounds of AdaBoost

(i.e. the numbers of trees). Fig. 4 shows the changes of Precision, Recall and F1-score under different parameter configura-

tions. From the figure, we can observe that better F1-scores can be achieved when we employ deeper weak classifiers and

run for more rounds. However, the corresponding running time increases too. Therefore, it is necessary to find a balance

between performance and efficiency. The testing time with respect to different numbers of trees and depths is shown in

Fig. 5 . Considering both the performance and the efficiency, we take 100 depth-4 decision trees as the strong classifiers for

the pixels and LIDAR points. 

6.2.2. Hybrid CRF parameters 

In the hybrid CRF model, there are several parameters controlling the importance of the different kinds of potential

terms. These parameters have a major impact on the performance of the proposed method. Again, we employ 2-fold cross

validation to search for the best parameters. The hybrid CRF model is built based on two unimodal pairwise CRF models.

The parameters are tuned as follows: Firstly, we find the best pixel to pixel pairwise weight λ in the pixel-based pairwise

CRF model. Then, the parameter of LIDAR point to LIDAR point pairwise term ζ is tuned in the LIDAR-point-based pairwise
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Fig. 5. Running time of pixel classification with different numbers of trees and depths. 

Fig. 6. Results of cross validation under different λ. 

 

 

 

 

CRF model. Then the best parameters λ and ζ are fixed, and the remaining two parameters γ and η are tuned in the hybrid

CRF model. 

Taking the UM subset as an example, we first tune parameters λ and ζ separately within the pixel-based pairwise CRF

and LIDAR-point-based pairwise CRF. We use Precision, Recall and F1-score to evaluate the performance of different param-

eter settings. The results are shown in Figs. 6 and 7 . With the results shown in the figures, we can choose the parameters

λ and ζ with the best F1-score. 
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Fig. 7. Results of cross validation under different ζ . 

Fig. 8. F1-scores of cross validation under different γ and η. 

 

 

 

 

 

Then these two parameters are fixed and we perform 2-fold cross validation for different settings of γ and η in the hy-

brid CRF model. Fig. 8 shows the F1-scores under different parameter settings. It can be seen from the figure that when the

parameters grow from small values, the F1-score increases, but when the parameters grow too big, the F1-score decreases

quickly. This figure can help us select the best γ and η with the highest F1-score. 

6.3. Performance evaluation 

To evaluate the performance of the proposed model, we conduct several comparative experiments on the KITTI-ROAD

dataset. In the first stage, we randomly divide the training images with ground-truth provided into two equally numbered
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Fig. 9. Comparison of road detection by pixel-based CRF (top) and the proposed HybridCRF (bottom). The green areas denote the detected roads. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Comparison on UM (perspective view). 

Algorithm MaxF AP PRE REC FPR FNR 

Pixel classifier 89.93 77.93 91.54 88.38 1.64 11.62 

Pixel-wise CRF 92.52 86.15 93.10 91.95 1.37 8.05 

HybridCRF 94.47 87.38 94.44 95.84 1.12 5.50 

Table 2 

Comparison on UMM (perspective view). 

Algorithm MaxF AP PRE REC FPR FNR 

Pixel classifier 92.45 85.75 91.94 92.97 2.55 7.03 

Pixel-wise CRF 94.49 87.28 93.62 95.37 2.03 4.63 

HybridCRF 95.53 88.50 94.97 96.10 1.59 3.90 

Table 3 

Comparison on UU (perspective view). 

Algorithm MaxF AP PRE REC FPR FNR 

Pixel classifier 86.15 73.66 86.86 85.45 2.15 14.55 

Pixel-wise CRF 90.96 79.23 93.66 88.42 1.00 11.58 

HybridCRF 92.64 85.96 93.13 92.16 1.13 7.84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sets: one used for training and the other used for testing. As the proposed method is a composite model of two sub-CRF

models, we firstly compare our method with the unimodal sub-CRF models, namely, the pixel-based CRF and the LIDAR-

point-based CRF. Because the ground-truth of the KITTI-Road dataset is provided only in the image domain, it is unsuitable

to evaluate the LIDAR-based methods. Thus, we compare the pixel-based CRF and the LIDAR-point-based CRF with our

method separately. 

For the pixel-based CRF, we can evaluate it and compare it with our method in the image domain using the official

development kit. Fig. 9 shows an example of the results obtained by the pixel-wise CRF and the proposed hybrid CRF, the

overlapped green area denotes the detected road. From the figure, it can be seen that the result of the pixel-based pairwise

CRF is affected by the shadow of the trees projected on the road, while in the proposed hybrid CRF, with LIDAR point cloud

fused, the impact of shadow has been reduced. 

Then quantitative evaluation is performed with the indices introduced in [14] . Additionally, we take the output of the

pixel classifier (it is also a special case of pixel-based CRF with λ = 0 ) as the baseline. Note that the three subsets are treated

separately. In other words, no data from one subset are used for training or testing of the other subsets. The evaluation is

performed in the perspective view. The results on the UM, UMM and UU subsets are shown in Tables 1–3 . 

Similarly, the same comparative experiments are conducted with the LIDAR-point-based CRF. The performance is eval-

uated in terms of LIDAR point-wise accuracy and the ground-truth labels are obtained by transferring the labels from the

ground-truth images to the LIDAR points by registration. The outputs of the boosted decision tree classifier are also taken

as another baseline. The results tested on the UM, UMM and UU subsets are listed in Tables 4–6 . 
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Table 4 

Comparison on UM (point cloud). 

Algorithm F1-score PRE REC FPR FNR 

Point classifier 94.74 93.53 95.98 3.36 4.02 

Point-wise CRF 95.28 94.29 96.29 2.95 3.71 

HybridCRF 96.06 95.61 96.51 2.24 3.49 

Table 5 

Comparison on UMM (point cloud). 

Algorithm F1-score PRE REC FPR FNR 

Point classifier 92.68 94.62 90.82 8.25 5.38 

Point-wise CRF 93.64 96.00 91.39 7.80 4.00 

HybridCRF 94.86 96.50 93.27 6.01 3.50 

Table 6 

Comparison on UU (point cloud). 

Algorithm F1-score PRE REC FPR FNR 

Point classifier 91.82 90.33 93.37 3.79 6.63 

Point-wise CRF 93.27 92.45 94.11 2.92 5.89 

HybridCRF 94.39 94.75 94.02 1.98 5.98 

Table 7 

Results of online evaluation on KITTI-UM (BEV). 

Algorithm MaxF AP PRE REC FPR FNR 

HIM [39] 90.07 79.98 90.79 89.35 4.13 10.65 

SPRAY [24] 88.14 91.24 88.60 87.68 5.14 12.32 

BM [49] 78.90 66.06 69.53 91.19 18.21 8.81 

ProbBoost [48] 87.48 80.13 85.02 90.09 7.23 9.91 

HistonBoost [47] 83.68 72.79 82.01 85.42 8.54 14.58 

RES3D-Velo [43] 83.81 73.95 78.56 89.80 11.16 10.20 

FusedCRF [50] 89.55 80.00 84.87 94.78 7.70 5.22 

PGM-ARS [41] 80.97 69.11 77.51 84.76 11.21 15.24 

CB [36] 88.89 82.17 87.26 90.58 6.03 9.42 

StixelNet [27] 85.33 72.14 81.21 89.89 9.48 10.11 

NNP [9] 90.50 87.95 91.43 89.59 3.83 10.41 

SRF [51] 76.43 83.24 75.53 77.35 11.42 22.65 

FCN-LC [35] 89.36 78.80 89.35 89.37 4.85 10.63 

MAP [25] 87.33 89.62 85.77 88.95 6.73 10.63 

HybridCRF(Ours) 90.99 85.26 90.65 91.33 4.29 8.67 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the results shown in the tables, it can be seen that with contextual information modeled, the pairwise CRF model

improves the performance over the pixel or LIDAR-point-based classifiers. Apart from the contextual information, the pro-

posed hybrid CRF also fuses the multi-sensor information in an integrated probabilistic model. Therefore, the inferred labels

are more accurate than the unimodal CRF models. 

With the superiority over the unimodal pairwise CRF models validated, we conduct some comparative experiments with

the recently developed ones. In these experiments, all the training data with the ground-truth provided in each subset is

used to learn the classifiers for that subset. The parameters take the optima obtained by cross validation in the previous

subsection. The results are transformed to the bird’s eye view (BEV) and then submitted to the website for evaluation. Fig. 10

shows some examples of testing images evaluated in the BEV. More results can be found on the website [1] . 

We compare the proposed approach with the high ranking methods on the leaderboard [1] , including HIM [39] , SPRAY

[24] , BM [49] , ProbBoost [48] , HistonBoost [47] , RES3D-Velo [43] , FusedCRF [50] , PGM-ARS [41] , CB [36] , StixelNet [27] ,

NNP [9] , SRF [51] , FCN-LC [35] and MAP [25] . Among these methods, there are camera-LIDAR fusion methods (RES3D-Velo

and FusedCRF) and stereo-vision-based methods (HistonBoost, ProbBoost and NNP). PGM-ARS and FusedCRF are methods 

which also take advantage of CRF. FCN-LC and MAP are deep-learning-based methods which exploit the powerful fully

convolutional networks [34] . 

The results on the UM, UMM, UU subsets and the average results are listed in Tables 7–10 . The best performance indices

are shown in bold. Note that the average precisions (AP) of our method are far worse than the best. The reason is that

the AP is designed for evaluating probabilistic predictions, while our method outputs binary predictions. Therefore, it is not

suitable to be evaluated in that metric. This point is also stated in [49] . For more detailed information about the results

of these methods, we refer the readers to the website [1] . From the results, it can be seen that the proposed method is

competitive. In particular, it achieves the best F1-scores on the UM and UU subsets. However, the results on the UMM
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Fig. 10. Road detected in the bird’s eye view. Here, the red denotes false negatives; the blue areas correspond to false positives, and the green represents 

true positives. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

subset is not as good as. That may be because the LIDAR points become sparser in the UMM scenes which have much

wider roads. Therefore, the LIDAR information becomes less discriminative, especially between the roads and sidewalks.

Nevertheless, the proposed method achieves the best F1-score in these algorithms on the whole dataset. 

In addition, the computational time is an important factor in developing and selecting road detection methods. For the

proposed method, the computation cost consists of feature extraction and classification of the pixels and LIDAR points, graph

construction and cutting. The proposed algorithm is implemented in standard, single-threaded C++ and tested on a standard

PC with 8GB memory and an Intel(R) Core(TM) i5-3230M CPU clocked at 2.6 GHz. The average computational time tested

on the KITTI-ROAD dataset is approximately 1.5 s. Although the current implemented version has not been used in real time,

we can use parallel computing and sub-sample the image for accelerating when in real-time application. 
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Table 8 

Results of online evaluation on KITTI-UMM (BEV). 

Algorithm MaxF AP PRE REC FPR FNR 

HIM [39] 93.55 90.38 94.18 92.92 6.31 7.08 

SPRAY [24] 89.69 93.84 89.13 90.25 12.10 9.75 

BM [49] 89.41 80.61 83.43 96.30 21.02 3.70 

ProbBoost [48] 91.36 84.92 88.18 94.78 13.97 5.22 

HistonBoost [47] 88.73 81.57 84.49 93.42 18.85 6.58 

RES3D-Velo [43] 90.60 85.38 85.96 95.78 17.20 4.22 

FusedCRF [50] 89.51 83.53 86.64 92.58 15.69 7.42 

PGM-ARS [41] 91.76 84.80 88.05 95.80 14.30 4.20 

CB [36] 90.55 85.40 92.75 88.45 7.60 11.55 

StixelNet [27] 93.26 87.15 90.63 96.06 10.92 3.94 

NNP [9] 91.34 88.65 91.07 91.60 9.87 8.40 

SRF [51] 90.77 92.44 89.35 92.23 12.08 7.77 

FCN-LC [35] 94.09 90.26 94.05 94.13 6.55 5.87 

MAP [25] 89.97 92.14 87.47 92.62 14.58 7.38 

HybridCRF(Ours) 91.95 86.44 94.01 89.98 6.30 10.02 

Table 9 

Results of online evaluation on KITTI-UU (BEV). 

Algorithm MaxF AP PRE REC FPR FNR 

HIM [39] 85.76 76.18 87.65 83.95 3.86 16.05 

SPRAY [24] 82.71 87.19 82.16 83.26 5.89 16.74 

BM [49] 78.43 62.46 70.87 87.80 11.76 12.20 

ProbBoost [48] 80.76 68.70 85.25 76.72 4.33 23.28 

HistonBoost [47] 74.19 63.01 77.43 71.22 6.77 28.78 

RES3D-Velo [43] 83.63 72.58 77.38 90.97 8.67 9.03 

FusedCRF [50] 84.49 72.35 77.13 93.40 9.02 6.60 

PGM-ARS [41] 79.94 67.77 77.37 82.67 7.88 17.33 

CB [36] 86.13 75.21 86.47 85.80 4.38 14.20 

StixelNet [27] 86.06 72.05 82.61 89.82 6.16 10.18 

NNP [9] 85.55 76.90 85.36 85.75 4.79 14.25 

SRF [51] 76.07 79.97 71.47 81.31 10.57 18.69 

FCN-LC [35] 86.27 75.37 86.65 85.89 4.31 14.11 

MAP [25] 84.44 87.17 83.66 85.23 5.42 14.77 

HybridCRF(Ours) 88.53 80.79 86.41 90.76 4.65 9.24 

Table 10 

Average results of online evaluation on KITTI-ROAD (BEV). 

Algorithm MaxF AP PRE REC FPR FNR 

HIM [39] 90.64 81.42 91.62 89.68 4.52 10.32 

SPRAY [24] 87.09 91.12 87.10 87.08 7.10 12.92 

BM [49] 83.47 72.23 75.90 92.72 16.22 7.28 

ProbBoost [48] 87.78 77.30 86.59 89.01 7.60 10.99 

HistonBoost [47] 83.92 73.75 82.24 85.66 10.19 14.34 

RES3D-Velo [43] 86.58 78.34 82.63 90.92 10.53 9.08 

FusedCRF [50] 88.25 79.24 83.62 93.44 10.08 6.56 

PGM-ARS [41] 85.69 73.83 82.34 89.33 10.56 10.67 

CB [36] 88.97 79.69 89.50 88.44 5.71 11.56 

StixelNet [27] 89.12 81.23 85.80 92.71 8.45 7.29 

NNP [9] 89.68 86.50 89.67 89.68 5.69 10.32 

SRF [51] 82.44 87.37 80.60 84.36 11.18 15.64 

FCN-LC [35] 90.79 85.83 90.87 90.72 5.02 9.28 

MAP [25] 87.80 89.96 86.01 89.66 8.04 10.34 

HybridCRF(Ours) 90.81 86.01 91.05 90.57 4.90 9.43 

 

 

 

 

 

 

7. Conclusions and future work 

This paper proposed a new road detection method based on sensor fusion of a monocular camera and a multi-layer

LIDAR. The information from the two sensors is jointly modeled in a hybrid conditional random field in which the labels

of the pixels and LIDAR points are considered as random variables and the edges consist of the connections: (i) between

the neighboring pixels in the image plane, (ii) between the neighboring LIDAR points in the 3D space, and (iii) between the

aligned LIDAR points and their corresponding pixels. The unary potentials of the pixels and LIDAR points are all obtained

by offline learned boosted decision tree classifiers. The pairwise potentials ensure the contextual consistency in images and
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point clouds, as well as the cross-modal consistency between the aligned pixels and LIDAR points. The proposed method

deeply fuses the information from camera and LIDAR and effectively reduces the ambiguities in road detection. Experiments

tested on the KITTI-ROAD benchmark dataset show that the proposed method outperforms other recently developed ones. 

In the future, we are considering employing the more powerful deep learning methods to obtain the unary potential

for the hybrid CRF model to boost the performance further. We can also transplant the algorithm to parallel computing

units like GPU to accelerate it. Besides, the hybrid CRF framework can be readily extended to multi-class semantic labeling.

We believe this novel sensor fusion model can achieve much better performance than the image-based semantic labeling

approaches. 
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