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• A new parameter, damping factor, is introduced to adjust the position information inherited from the previous state.
• The cooperative mechanism is employed to help find the global optima quickly.
• Pleast, is defined to decide whether current information of particles is abandoned and reinitialized.
• 24 benchmark functions and three variants of PSO are used to verify our approach.
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a b s t r a c t

A novel variant of particle swarm optimization with damping factor and cooperation mechanism (PSO-
DFCM) to search the global optima in a large scale and high-dimensional searching space. In this optimal
searching strategy, one balances the exploring and exploiting abilities of particles by introducing a new
parameter, a damping factor α, which is used to adjust the position information inherited from the
previous state. The cooperativemechanism between the global-best-oriented and the local-best-oriented
swarms is employed to help find the global optima quickly. In order to reduce the negative effect of
unfavorable particles on swarm evolution, a new concept of evolution history, the least optimal particle in
individuals’ histories — pleast , is defined to decide whether current information of particles is abandoned
and reinitialized in our proposal. Also, fuzzy c-means clustering is applied to cluster theparticles’ positions
for the neighborhood establishment of individuals. Our comparative study on benchmark test functions
demonstrates that the proposed PSO outperforms the standard PSO and three state-of-art variants of PSO
in terms of global optimum convergence and final optimal results.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Particle swarm optimization (PSO) was firstly proposed by
Eberhart and Kennedy [1], inspired by biosocial phenomena such
bird flocking and fish schooling. POS is a population-based stochas-
tic optimization technique, the basic notion of which is that social
sharing of information among peers provides a great evolutionary
advantage. In PSO and its extended algorithms, swarm populations
are the candidate solution space of fitness functions and the agents
of swarm are correspondingly called particles. Animals, especially
birds and fishes, normally travel in groups without colliding. Each
member adjusts its position and velocity using the collective and
historical information, hence it reduces the individual’s effort for
searching food or shelters. When compared with other evolu-
tionary optimization algorithms, PSO has better computational
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efficiency for continuous optimal problems mainly because of less
memory space requiring fewer model parameters to be adjusted
and less effort to implement [2]. Thus, PSO and its extensions have
many successful applications in practical engineering optimiza-
tions [3].

Most studies in the literature have focused on the parameter
optimization for the standard PSO including the population size of
swarm (pop_size), inertia weight (w), accelerating factors (c1, c2),
constraint factor χ , velocity and position of particles (Xmax, Vmax)
since the solution performance is sensitive to the selection of those
parameters [4] (See Eq. (1)),

V t+1
i,j =wV t

i,j + c1r1(pbest(t)i,j − X t
i,j)+ c2r2(gbest(t)− X t

i,j) (1a)

X t+1
i,j = X t

i,j + χV t+1
i,j (1b)

where X t
i,j (|X

t
i,j| ≤ Xmax) and V t

i,j(|V
t
i,j| ≤ Vmax) are the jth particle’s

velocity and position in the ith dimension at the time index t ,
respectively; pbest(t)i,j is the historical optimal position of particle
j, and gbest(t) is the collective optimal position.
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Although many efforts have been put into developing new
techniques for parameter selection for different optimal problems,
most current techniques have not obviously improved the limi-
tation of the standard PSO [5]. To improve the performance and
convergence of PSO,many researchers have successfully developed
new variants of PSOs based on the theories in other fields. These
variants are mainly in the following three categories:

(1) biologically extended PSOs: PSO with an aging leader and
challengers [6], social learning PSO [7], PSO with a coop-
erative approach [8], clubs-based PSO [9], group decision
PSO [10], principle component PSO [11] and multigrouped
PSO [12];

(2) physically extended PSOs: PSO with fine tuning operator
[13], opposition-based PSO [14], PSO with Bayesian tech-
niques [15], PSO with recombination and dynamic linkage
discovery [16], PSO with fuzzy clustering [17], two-parts-
divided PSO [18], chaos enhanced PSO [19] and gravitational
global PSO [20];

(3) hybrid PSOswith other heuristic algorithms: PSOwith simu-
lated annealing and swarm core evolutionary [21], PSOwith
differential evolution [22], genetic learning PSO [23], hybrid
PSOwith artificial bee colony [24], hybrid PSOwith artificial
fish swarm [25].

Note that more computational effort is required when PSO is
combined and/or hybridized with other theories and algorithms.
In addition, velocity updating techniques are improved to avoid
the premature convergence to local optimal points [26,27]. Starting
from a time-varying discrete dynamical system and stochastic
process, three papers have proved that PSO needs for convergence
to optimal points which are based on s second order difference
equation [28,29]. Tian [30] gives a review of convergence analysis
in PSO and its extended algorithms.

This paper is motivated by the two issues of PSO and its vari-
ants: (i) difficulty in obtaining optima in a large-scale and high-
dimensional space, and (ii) premature convergence to local opti-
mal points [31]. A new damping factor α is used to balance the
exploring and exploiting abilities of particles, and a cooperative
mechanism between the global-best-oriented and the local-best-
oriented swarms is employed to help find global optima more
quickly. A parameter, the least optimal particles in individuals’
histories, is adopted to decide whether current information of par-
ticles is abandoned and reinitialized in order to reduce the negative
effect of unfavorable particles on swarm evolution. Also, fuzzy c-
means clustering is applied to cluster the particles’ positions for
the individuals’ neighborhood establishment in order to speed up
convergence. The proposed approach PSO-DFCM has shown better
performance in global optimum convergence and final optimal
results, comparedwith the standard PSO and three state-of-art PSO
versions.

The rest of this paper is organized as follows: Section 2 presents
the algorithm by introducing the damping factor, cooperative
mechanism and parameters choice. Section 3 discusses the exper-
imental results. Concluding remarks are described in Section 4.

2. Methodology

2.1. Damping movement inspired by general inertia law

In reality, many equilibrating systems will generate some re-
sistant mechanisms to transient external forces that break the
previous equilibrium states and bring themselves back into a new
equilibrium, which is called General Inertia Law [32]. It has alter-
native explanations in various fields: Newton’s law in kinetics,
Hooke’s law in a spring system, Lenz’s law in electromagnetics,
Le Chatelier’s principle in chemical reaction systems and Estrous

Cycle in biology. In PSO, optimal solutions depend on the particles’
positions, which are updated by particles’ previous positions and
current velocities. Thereby, one applies the inertia rule to refine the
position update of each particle according to comparison between
previous and current position of each particle, and Eq. (1b) can be
transformed as follows:

X t+1
i,j = λ

∆∗j X t
i,j + χV t+1

i,j (2)

where α = λ
∆∗j (λ > 1.0) is a damping factor, which decides how

much inherited information particles enlarge or shrink from the
previous states, and ∆j (∆j = fitnesstj − fitnesst−1j ) is an inertia-
balancing factor to decide whether individuals enlarge or diminish
inherited information. Eq. (2) is the modification equation for
particle position update from Eq. (1b), which is based on the logical
analysis of inertia. It gives a description of how much position
information passing from the previous state to the current state.
In order to avoid the premature convergence of particles, ∆j is
normalized into [−1, 1] as follows:

∆∗j =
2

max{∆j} −min{∆j}
(∆j −min∆j)− 1 (3)

and max{∆j} ̸= min{∆j}, otherwise ∆∗j = 0. If ∆j > 0, the particle
j searches the optimal points in an exploring mode, otherwise in
an exploiting mode. Eq. (3) just defines inertia-balancing factor to
decide whether individuals enlarge or diminish inherited informa-
tion based on the previous state.

The exploring or exploiting mode is achieved by Eq. (3) accord-
ing to the definition of the damping factor, when∆j is greater than
zero, then particle j inherits more position information from its
previous state and moves bigger steps, which means the particle j
explores new surroundings. Howeverwhen∆j is less than zero, the
particle j just walks around the adjacent neighbors due to smaller
movement, thus the particle j is in the mode of exploitation.

2.2. Cooperative mechanism between individuals

In a natural environment, birds often confront numerous chal-
lenges, such as food scarcity and low breeding rates. They normally
cooperate with other members in neighborhoods to increase the
foraging efficiency [33] and the chance of breed success [34]. Previ-
ous researchhas introduced some cooperativemechanisms for PSO
improvement. However, these cooperative mechanisms are just
limited to best individuals [35–37], rather than all individuals. This
paper applied amodified cooperativemechanism to all individuals.
The cooperative mechanism may have the following advantages:
(1) all individuals can exchange the location information of the
best particle by local and global search, this improvement can
absorb mutual advantages of both local and global search modes;
(2) through the competition strategy, the top N particles will be
selected out of a group of 2N particles, therefore, the convergence
to the global optima will be guaranteed.

In the standard PSO, gbest(t) is the collective optimal point
at time index t . Based on the neighborhood size, there are two
versions: global version gbest(t) → gbestg (t), and local version
gbest(t)→ gbestl(t). gbestg (t) refers to the best particle candidate
of the whole swarm while gbestl(t) represents the best particle
of the individual’s neighborhood. For swarm neighborhood cal-
culation, the social network adopted by gbestg (t) reflects the star
topology, which offers a faster convergence but it is very likely
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to converge prematurely. While gbestl(t) uses a local social net-
work topology, where smaller neighborhoods are defined for each
particle (e.g., ring, sphere, hexagon, cylinder ). Due to the lower
particle inter-connectivity of gbestl(t), it is less susceptible to being
trapped in local minima at the cost of slow convergence. Herein,
one aggravates two versions of gbest(t) to take advantage of their
mutual merits and inhibit their unfavorable factors. It is suggested
that a dual swarm can be employed to search the global optima:

(1) global-best aimed swarm evolves in Eq. (4)
gV t+1

i,j = χ × (gV t
i,j + cg1 r

g
1 (pbest(t)i,j − X t

i,j)

+ cg2 r
g
2 (gbestg (t)− X t

i,j))
(4)

where χ = 2/|2− c −
√
c2 − 4c|(c = cg1 + cg2 );

(2) local-best aimed swarm evolves in Eq. (5)
lV t+1

i,j = w(t)× lV t
i,j + c l1r

l
1(pbest(t)i,j − X t

i,j)

+ c l2r
l
2(gbestl(t)− X t

i,j)
(5)

Eqs. (4) and (5) are the velocity equations of PSO for the global and
local searchmode, respectively. Note that fuzzy c-means clustering
is utilized for the neighborhood establishment of gbestl(t). There
may be a chance that gbestl(t)s sometimes prematurely converge.
Therefore, these gbestl(t)s should escape from local optimal points
by way of random walks. A perturbing term of random walk is
incorporated into Eq. (5) and the new updating method of lV t+1

i,j
is as in Eq. (6)
lV t+1

i,j = w(t)× lV t
i,j + c l1r

l
1(pbest(t)i,j − X t

i,j)

+ c l2r
l
2(gbestl(t)− X t

i,j)+ R× N(µ, Σ)
(6)

where µ = E[X], Σ = COV (X) and R is a trigger factor of random
walk which is defined by Eq. (7)

R =
{
1 r l1 + r l2 > rg1 + rg2
0 otherwise

(7)

If r l1+r
l
2 > rg1+r

g
2 , the particles’ learning abilities are overwhelmed

and their obsessive tendencies are alleviated by random walk to
avoid premature convergence. Eq. (6) is the modified equation of
Eq. (5) incorporating the randomwalk for avoiding the local optima
trap. The purpose of this equation is that using randomwalk allows
the opportunity of local optima points. Eq. (7) is defined as a trigger
factor for the random walk.

A cooperative mechanism among all individual particles is pre-
sented based on cooperative strategies as follows:

(1) compute particles’ temporary positions individually accord-
ing to Eqs. (4) and (5) as follows:
gXtempt+1i,j = X t

i,jλ
∆j +

gV t+1
i,j (8a)

lXtempt+1i,j = X t
i,jλ

∆j +
lV t+1

i,j (8b)

(2) update particles’ positions based on overall competition of
Eq. (9)

X t+1
i,j = Xtempt+1i,j (9)

where ∀Xtempt+1i,j satisfies

f (Xtempt+1
:,1 ) ≤ f (Xtempt+1

:,2 ) ≤ · · · , f (Xtempt+1
:,pop_size)

≤ f (Xtempt+1
:,pop_size+1) ≤ · · · ≤ f (Xtempt+1

:,2pop_size)

(3) update particles’ reference information:
pbest(t + 1)i,j, gbestl(t + 1) and gbestg (t + 1) from X t+1

i,j .

Eq. (8) is to compute the updated positions of both local and global
search modes for providing the best candidates for the particle

group. Eq. (9) describes how the best candidates are selected for
the particle group.

2.3. Weak particles reinitialization tactic

In order to reduce the negative effect of weak particles, one
also needs a weak-point-abandoned tactic to guarantee the swarm
movement towards potential optimal direction as much as pos-
sible. Therefore, the least optimal particle in individual histories,
pleast:,j(t), is defined, which updates as Eq. (10)

pleast:,j(t + 1) =
{
pleast:,j(t) f (pleast:,j) ≥ max{f (X:,j)}
X:,jmax otherwise

(10)

where X:,jmax satisfies f (pleast:,jmax) = max{f (X:,j)}. Also, its posi-
tion is to be re-initialized (X t

:,j ∼ N(µ, Σ) ) and if the particle’s
fitness value is less optimal than that of pleast:,j(t). Eq. (10) gives
the location information of least optimal particle. The logic behind
this weak particle tactic is to allow the particle to avoid the re-
exploration in the unwanted zone that has been tracked before.

2.4. Parameters choice and algorithm initialization

In the method presented, r l,g1,2 are uniform random numbers
(∼ U(0, 1)). It is simply assume that pop_size = 2N × D + 20;
the number of clustering centers is N and the variable D is used to
denote the dimension of the search space. For adaptive calculation
of w(t), one develops a diverse information entropy based inertia
weight in virtue of fuzzy c-means clustering:

w(t) =
1

1+ a× exp(−b
∑N

n=1 qn log(
1
qn
))

(11)

where qn is the ratio of the number of clusters n toN; a and b are the
constant numbers related to the weight range [0.4, 0.9]. Eq. (11)
justifies theweight for the local searchmodewhich is based on the
definition of information entropy, and converts the information
entropy to the weight range using a nonlinear function. In this
paper, the negative exponential function is adopted due to the
decay property. Other functions can also be considered. In Eq. (4),
the particles explore coarsely the optima in global searching space,
therefore, acceleration factors (cg1 and cg2 ) should be more than 2.0
and remain constant. In our proposal, the default values for both cg1
and cg2 are set to be 2.05. In Eq. (5), the particles exploit the optima
in a local foraging space in a delicate way, hence, acceleration
factors (c l1 and c l2) are respectively different over evolution and
are supposed to be less than 2.0, the calculation of c l1 and c21 is as
follows [38]:

c l1 = 1.5−
min{fj(t)}

fj(t)
(12a)

c l2 = 0.5+
min{fj(t)}

fj(t)
(12b)

Procedure of the proposed PSO-DFCM:
Step 1: Input the fitness function of optimal problem f (X), themax-
imum iteration Max_Iter , the position limit of particles Max_Iter
and the damping factor α.
Step 2: Initiate PSO-DFCM by generating the position and velocity
of all the particles, calculate the fitness of each particle, and set
the current fitness value and position as the historical best value
and the historical best position. Find the global best value and the
global best position.



48 M. He, M. Liu, R. Wang et al. / Applied Soft Computing Journal 76 (2019) 45–52

Table 1
Non-constrained 24 benchmark functions.
Function Form Geometry shape Separable Other features

Sphere f1 =
D∑

i=1
x2i Unimodal No Easy to Converge

Noncontiguous-sphere f2 =
D∑

i=1
(⌊xi + 0.5⌋)2 Unimodal Yes Easy to Converge

Uniform-distribution
perturbed ellipsoid

f3 =
D∑

i=1
ix2i + U(0, δ) Unimodal Yes Affected by Perturbing Term

Rastrigrin f4 =
D∑

i=1
(x2i − 10 cos(2πxi)+ 10) Multimodal No Large Number of Local optima

Rosenbrock f5 =
D−1∑
i=1

(100(xi+1 − x2i )
2
+ (xi − 1)2) Unimodal No The Global Optimum

in a Long Narrow
Parabolic-Shaped-Flat Valley

Schwefel f6 =
D∑

i=1
|xi| +

D∏
i=1
|xi| Unimodal Yes Hard to Converge

to the Global Optimum
in Some Directions

1st Schwefel f7 =
D∑

i=1
(

i∑
j=1

xj)
2

Unimodal No Symmetric & Great Gradient
Difference
in Adjacent Directions

2nd Schwefel f8 =
D∑

i=1
|xi||sin(

√
|xi|)| Multimodal Yes Large Number of Local optima

Ackley f9 = −20 exp(−0.2

√
1
D

D∑
i=1

x2i )−

exp( 1
D

D∑
i=1

cos(2πxi))+ 20+ e

Multimodal No a Nearly Flat Outer Region

Griewank f10 = 1
4000

D∑
i=1

x2i −
D∏

i=1
cos( xi√

i
)+ 1 Multimodal No Easily Trapped in Local Optima

Alpine f11 =
D∑

i=1
(|xi sin(xi)| + 0.1xi) Unimodal No Easily Premature over a Few

Iterations

Schaffer f12 = 0.5+
sin2(

√
D∑

i=1
x2i )−0.5

1+0.1
D∑

i=1
x2i

Multimodal No Large Number of Local optima

Different power f13 =
D∑

i=1
|xi|i+1 Unimodal No Asymmetric

Bent cigar f14 = x21 + 106
D∑

i=2
x2i Unimodal No Smooth but Narrow Ridge

Discus f15 = 106x21 +
D∑

i=2
x2i Unimodal No Sharp but Broad Ridge

Zakharov f16 =
D∑

i=1
x2i + (

D∑
i=1

0.5xi)2 + (
D∑

i=1
0.5xi)4 Unimodal No Dramatic Gradient Discrepancy

at Different Directions
Levy f17 = sin2(πw1)+

D−1∑
i=1

(wi − 1)2(1+ 10sin2(πwi + 1))+

(wD − 1)2(1+ sin2(2πwD))

Multimodal No Large Number of Local optima

High conditioned
elliptic

f18 =
D∑

i=1
(106)

i−1
D−1 x2i Unimodal No The Global Optimum in a

Long Smooth and Wide Valley

Weierstrass f19 =
D∑

i=1
(
kmax∑
k=0

(ak cos(2πbk(xi + 0.5))))−

D
kmax∑
k=0

ak cos(πbk)

Multimodal No Continuous Everywhere but
Differentiable Nowhere

Katsuura f20 = 10
D2

D∏
i=1

(1+ i
32∑
j=1

⏐⏐⏐2jxi−round(2jxi)⏐⏐⏐
2j

)

10
D1.2

−
10
D2 Multimodal Yes Many Similar Local Optima

to the Global Optimum
Expanded Schaffer f21 = f12(x1, x2)+ f12(x2, x3)+ · · · +

f12(xD−1, xD)+ f12(xD, x1)
Multimodal No Similar to Schaffer

but Local Optima
Closer to Each Other

HappyCat f22 = |
D∑

i=1
x2i − D|

1
4+

1
2

D∑
i=1

x2i +
D∑

i=1
xi

D +
1
2 Multimodal No the Better Optimum

the Narrower Region

HGBat f23 = |(
D∑

i=1
x2i )

2
− (

D∑
i=1

xi)2|
1
2+

1
2

D∑
i=1

x2i +
D∑

i=1
xi

D +
1
2 Multimodal No Different Properties around

Different Local Optima
Expanded Griewank f24 = f10(f5(x1, x2))+ f10(f5(x2, x3))+ . . .+

f10(f5(xD−1, xD))+ f10(f5(xD, x1))
Multimodal No

Where wi = 1+ xi−1
4 (∀i = 1, . . . ,D), a = 1

2 , b = 3, kmax = 20.
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Fig. 1. Fitness of 24 benchmark functions in 50D Space over Iterations.

Step 3: Update the global best value and the temporary global best
position using Eq. (4) and Eq. (8a), respectively.
Step 4: Use fuzzy c-means clustering to cluster the particles’ po-
sitions for the neighborhood establishment. Update the local best
value and the temporary local best position using Eq. (6) and
Eq. (8b), respectively.

Step 5: Start cooperation between local and global swarms using
Eq. (9) to update global positions of all particles.
Step 6: Use Eq. (10) to carry out a weak particle reinitializing tactic
to guarantee particles moving towards optimal direction as much
as possible.
Step 7: Update positions and velocities of all particles.
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Table 2
The optimal values of proposed PSO and compared PSOs (24 tests under 50 dimensions).
Function (50D) S-PSO MFG-PSO G-PSO PSO-DTT Proposed

f1 3.4849× 10−12 3.2832× 10−14 3.4733× 10−15 1.4121× 10−21 2.4544× 10−88
f2 3 0 0 0 0
f3 15.3814 0.0364 0.0318 0.0193 0.0149
f4 151.23 150.24 116.41 39.798 1.1369× 10−13
f5 78.109 47.83 45.686 41.452 0.8837
f6 500.05 300.069 200.01 1.0165 1.4737× 10−6

f7 1477.4 5.3609 2.8252 2.1165 9.7048× 10−6

f8 2.9779× 10−3 5.5373× 10−5 2.0818× 10−5 1.0266× 10−5 8.7695× 10−8

f9 21.101 20.5678 20.1276 1.2789 3.8348× 10−6

f10 2.7961 1.4772× 10−2 7.3960× 10−10 1.4772× 10−10 2.2204× 10−16

f11 40.6410 5.1119× 10−3 2.8313× 10−3 4.5049× 10−5 7.7318× 10−8

f12 0.49743 0.48629 0.48049 0.47014 2.8008× 10−3

f13 1.3438× 1032 1.0× 103 3.6450× 103 1.4912× 10−8 5.7234× 10−13

f14 1.0× 104 3.4459× 10−6 2.6637× 10−5 4.7793× 10−8 1.3637× 10−11

f15 2.0× 104 8.5719× 10−10 5.5301× 10−13 2.3545× 10−14 3.2578× 10−19

f16 2.5252× 10−6 4.4133× 10−7 7.4766× 10−10 1.7879× 10−10 1.7150× 10−14

f17 162.86 112.8 29.898 73.816 1.4779× 10−10

f18 4.4776× 107 5.2182× 106 5.1795× 105 1.0182× 105 0.069413
f19 249.23 239.69 79.2256 63.537 0.0252
f20 1.8186× 106 5.918× 10−4 6.8206× 10−4 1.8206× 10−6 5.8900× 10−8

f21 22.4890 19.4820 19.4671 17.7185 1.1150× 10−3
f22 0.54776 0.44299 0.41453 0.40875 0.30206
f23 2.1700× 10−3 2.0500× 10−3 1.8900× 10−3 1.2101× 10−3 6.7315× 10−4
f24 39.0842 8.9081 6.9491 6.3789 4.2696

Step 8: If the optimal value meets our requirement or the maxi-
mum iteration is reached, terminate the algorithm. Otherwise, go
toStep 3 for a new iteration.

The pseudo code of the PSO-DFCM is presented in algorithm 1:
Algorithm 1: The Pseudo Code of Proposed PSO
Require: the fitness function of optimal problem f (X), the

maximum iterationMax_Iter , the position limit of particles Xmax
and the damping factor α

Initialize: iter = 0, X iter
j ∼U(−Xmax, Xmax) and V iter

j = 0
Stop Criterion: iter ≤ Max_Iter or the optimal value is not
reached
Update gV iter+1

j in conformity with Eq. (4).
Move particles’ global transient positions according to Eq. (8a).
Update lV iter+1

j in conformity with Eq. (6).
Move particles’ local transient positions according to Eq. (8b).
Limit the particles’ global and local transient positions.
Start cooperation between local and global swarms based on
Eq. (9).
Abandon weak particles and reinitialize their positions using
Eq. (10).
Update particles’ pbest , gbestl, gbestg and pleast information.
iter ← iter + 1

3. Experiments and results analysis

In order to test the performance of our proposed method, 24
benchmark functions are adopted from the paper [39] to vali-
date our proposal algorithm. The benchmark functions in Table 1
have either a narrow valley, basin, or a huge number of local
optima, which are challenging for optima-search algorithms. In
the comparative study with the standard PSO and three state-of-
art variants of PSO, it is demonstrated that the proposed method
is more adaptive to large scale and high-dimensional searching
optimal problems:

(1) Standard PSO (S-PSO) [4]
(2) Multi-function Global PSO (MFG-PSO) [18]
(3) Gravitational PSO (G-PSO) [20]
(4) PSO Using Dynamic Tournament Topology (PSO-DTT) [40]

In order to compare our proposed PSO with other PSO variants,
dimensions of all tested benchmark functions are set to 50; the
maximum iteration step of each improved PSO is fixed at 1× 103,
and the searching space is −100 ∼ 100 in all non-constrained
benchmark functions. Table 1 lists 24 on-constrained benchmark
functions. Tables 2–4 show the optimal values of the proposed
PSO and compared PSOs under 50, 30 and 10 dimensions, respec-
tively. Fig. 1 demonstrates fitness of 24 benchmark functions in
50-dimensional space over iterations with the proposed PSO and
compared PSOs.

For unimodal geometrical functions (f1−3,5−7,11,13−16), one can
observe that our proposal’s performance outperforms four other
algorithms in term of final optimal values. But for convergence
speed, the proposed method is the fastest in f1−2,5−6,11 but not
in f3,13−16. As to multimodal geometrical functions (f4,8−10,12), the
suggested method has an efficient capacity of escaping from the
local optima points since the re-initialized positions for abandoned
particles contribute to diversity increase among swarms.

In the comparative study shown in Tables 2–4, it is easily ob-
served that reaching the tolerated ranges of optimal values needs
more computational efforts over the rise in problem dimensions.
When local optima and global optimum in objective problems are
highly huddled together in high-dimensional space such like f12,
finding the potential global optimal points is an arduous task for
computers; some algorithms cannot tackle well the challenges in
large barriers and local optima traps when approaching the global
optimal points. From the comparative results shown in Figs. 1(a)–
1(p) and Tables 2–4, our proposed PSO has better performance in
finding and converging to the global optimal points, especially for
high-dimensional optimal problems.

A new parameter, a damping factor α, is introduced in the
proposed PSO, which is manually input by users based on prior
information. Therefore, it is imperative to study how α affects
the performance of our improved PSO, mainly on the convergence
speed and the final global optimal value and its solutions. One
adopts the functions of Ackley and Schaffer with 30 variables to
find out the recommended values of α. From Figs. 2(a) and 2(b),
one can observe that different α values have different effects on
various optimal problems and α ∈ [1.0, 1.2] is recommended for
most optimal problems.
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Table 3
The optimal values of proposed PSO and compared PSOs (24 tests under 30 dimensions).
Function (30D) S-PSO MFG-PSO G-PSO PSO-DTT Proposed

f1 3.4407× 10−27 8.0012× 10−27 5.3766× 10−29 4.5759× 10−30 1.0272× 10−38
f2 0 0 0 0 0
f3 0.0149 0.0075 0.0078 0.0059 0.0021
f4 73.6270 41.788 21.8891 0 1.1997× 10−15
f5 16.126 16.008 11.536 17.993 0.2639
f6 500 300 0.54216 3.3967× 10−5 1.3276× 10−9

f7 1.8186× 10−3 2.6025× 10−6 1.0513× 10−6 1.2530× 10−6 2.7609× 10−7

f8 1.1802× 10−5 1.296× 10−9 5.4424× 10−10 9.3069× 10−14 3.7774× 10−14

f9 20 20 20 2.66× 10−15 8.8817× 10−8

f10 0.0132 0.0074 0.0369 1.1102× 10−16 0
f11 0.16379 4.6163× 10−7 5.7395× 10−7 1.7238× 10−7 1.1705× 10−11

f12 0.39813 0.44918 0.39813 0.44918 2.4520× 10−4

f13 4.6582× 1021 10.1253 9.9153 6.3246× 10−13 8.5617× 10−17

f14 1.0× 104 1.1584× 10−21 1.0000× 10−18 1.4076× 10−23 2.762× 10−26

f15 3.5337× 10−22 2.3683× 10−29 1.3158× 10−25 3.1181× 10−30 1.4563× 10−40

f16 2.1575× 10−22 2.3491× 10−22 3.1189× 10−25 1.6514× 10−27 2.0309× 10−35

f17 114.89 0.9897 5.6708× 10−25 1.2198× 10−27 3.0815× 10−33

f18 1.1615× 106 7.6993× 105 1.1826× 105 8.5210× 10−10 5.8791× 10−25
f19 142.2310 113.46 28.1026 13.5372 0.0072
f20 0.68195 0 0 0 0
f21 11.994 11.705 11.492 11.492 2.7153× 10−4
f22 0.51693 0.43708 0.25112 0.24713 0.21061
f23 6.7579× 10−4 4.5662× 10−4 3.7527× 10−4 3.0054× 10−4 2.3162× 10−6
f24 14.9267 5.1723 2.8651 2.7687 1.4319

Table 4
The optimal values of proposed PSO and compared PSOs (24 tests under 10 dimensions).
Function (10D) S-PSO MFG-PSO G-PSO PSO-DTT Proposed

f1 1.2981× 10−33 2.6476× 10−67 1.4636× 10−71 2.2207× 10−75 7.5135× 10−100
f2 0 0 0 0 0
f3 0.0134 0.0018 0.0012 0.0031 0.0002
f4 4.9748 2.9849 2.9849 0 0
f5 0.7236 0.0313 0.1961 0.067817 1.0174× 10−6

f6 1.6792× 10−31 1.8431× 10−34 3.7758× 10−35 2.3531× 10−37 3.0834× 10−45

f7 2.2444× 10−33 5.4982× 10−45 3.5619× 10−47 1.9476× 10−50 4.353× 10−55

f8 6.2851× 10−14 7.2521× 10−15 3.6261× 10−15 1.4504× 10−14 3.6259× 10−15

f9 20 20 20 0 6.6529× 10−11
f10 0.017226 0.095866 0.051657 0 0
f11 2.2704× 10−14 2.3315× 10−15 3.8858× 10−15 6.1062× 10−16 2.2204× 10−16

f12 0.2452 0.2452 0.2452 0.2452 1.0519× 10−7

f13 5.1321× 10−34 6.2584× 10−109 6.4853× 10−114 4.3336× 10−116 9.7942× 10−124

f14 1.0× 104 3.8447× 10−63 4.2304× 10−34 2.8381× 10−68 6.4535× 10−94

f15 1.9378× 10−33 2.5672× 10−66 4.8278× 10−69 1.9491× 10−73 3.3106× 10−99

f16 5.6294× 10−34 7.5227× 10−68 2.9228× 10−74 8.0551× 10−68 5.7021× 10−97
f17 0 0 0 0 0
f18 1.0× 104 0.0830 0.0010 0 0
f19 52.1023 33.6416 7.4766 0.3153 0
f20 0 0 0 0 0
f21 3.4973 2.9974 1.4995 0.9989 0
f22 6.5738× 10−6 4.8638× 10−6 4.0837× 10−6 1.7879× 10−6 0
f23 0 0 0 0 0
f24 2.0659 0.5816 0.3509 0.2861 0.0137

Fig. 2. Performance impact of different α.
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4. Conclusions

In this work, a novel variant of PSO (PSO-DPCM) is proposed
considering damping factor and cooperative mechanism. Two ver-
sions of collective best particles are aggregated together to take
advantage of the merits of both. Two swarms are employed to
find out optimal positions based on the cooperative mechanism.
In the local-best-oriented swarm, random walk is also incorpo-
rated into particles’ velocity updates as a perturbing term for the
premature convergence avoidance of local best particles and the
neighborhoodmode of individuals is adaptively established by the
application of fuzzy c-means clustering to particles’ positions. To
strengthen the exploring and exploiting competences of particles,
a damping factor is introduced to adjust the position informa-
tion inherited from the previous state. It is inevitable that some
particles will become unfavorable and weak over evolutions. The
proposed method also utilizes an abandoned tactic to reduce the
negative effect of weak particles on optimal results. Comprehen-
sive experiments have validated that our proposal has a good
globally-searching capacity and performs effectively and reliably
when compared with standard PSO and three state-of-art variants
of PSOs.
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