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ARTICLE INFO ABSTRACT

Keywords: Generative Adversarial Networks (GANs) have been extremely successful in various application domains such

GANs as computer vision, medicine, and natural language processing. Moreover, transforming an object or person to

Image synthesis a desired shape become a well-studied research in the GANs. GANs are powerful models for learning complex

Image-to-%mage translation distributions to synthesize semantically meaningful samples. However, there is a lack of comprehensive review

Ic?aasiieﬁf::tlg; in this field, especially lack of a collection of GANs loss-variant, evaluation metrics, remedies for diverse
image generation, and stable training. Given the current fast GANs development, in this survey, we provide a
comprehensive review of adversarial models for image synthesis. We summarize the synthetic image generation
methods, and discuss the categories including image-to-image translation, fusion image generation, label-to-
image mapping, and text-to-image translation. We organize the literature based on their base models, developed
ideas related to architectures, constraints, loss functions, evaluation metrics, and training datasets. We present
milestones of adversarial models, review an extensive selection of previous works in various categories, and
present insights on the development route from the model-based to data-driven methods. Further, we highlight
a range of potential future research directions. One of the unique features of this review is that all software
implementations of these GAN methods and datasets have been collected and made available in one place at
https://github.com/pshams55/GAN-Case-Study.

1. Introduction

Big data has enabled deep learning algorithms achieve rapid ad-
vancements. In particular, state-of-the-art generative adversarial net-
works (GANs) [1] are able to generate high-fidelity natural images of
diverse categories. It is demonstrated that, given proper training, GANs
are able to synthesize semantically meaningful data from standard data
distributions. The GAN was introduced by Goodfellow et al. [2] in
2014, and performs better than other generative models in producing
synthetic images, and later has become an active research area in
computer vision. Fig. 1 shows the importance of this topic in the recent
years. The standard GAN contains two neural networks, a generator
and a discriminator, in which the generator attempts to create realistic

samples that deceive the discriminator, which strives to distinguish the
real samples from the fake ones. The training procedure continues until
the generator wins the adversarial game. Then, the discriminator makes
the decision that a random sample either is fake or real. There are two
main research directions in GAN. The first is focused on the theoretical
thread that attempts to improve GAN stability, and address the training
issues of GAN [3-7], or reformulate it from different viewpoints like in-
formation theory [8-10] and efficiency [11-13]. The second focuses on
the architectures and applications of GAN in computer vision [3,14,15].
In addition to image synthesis, there are numerous applications where
GAN is successfully used, such as image super-resolution [16], image
captioning [17], image inpainting [18], text-to-image translation [19],
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Fig. 1. It shows the most frequent keywords in CVPR and ICCV conferences from
2017 to 2020. The size of each word indicates the frequency of that keywords. The,
“synthetic” and “adversarial” keywords are often have been used.
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Fig. 2. An overview of image synthesis methods since 2014, we tried to reference the
original research articles, later discuss their proposed variations in the content.

semantic segmentation [20], object detection [21], generative adver-
sarial attack [22], neural machine translation [23], image fusion [24-
27] and image denoizing [28].

An introduction to GANs has been provided by Huang et al. [29]
and Goodfellow [30] where they discussed the significance of GAN
models and compares GANs and its variations to generate synthetic
samples. More recently, Creswell et al. [31] presented a survey of
GANs which evaluates models and training methods. These generic
image synthesis surveys, discussed GANs in a general context, without
considering the formation details, advantages and drawback of each
model. These studies are limited in that they only cover GANs architec-
tures and algorithmic methods including feature selection and weighted
approaches. The GANs surveys that have been published so far are
summarized in Table 1. However, there is a lack of a survey paper that
with theoretical analysis discusses the advantages and disadvantages of
presented models.

Based on these observations, this paper targets the following open
questions. What are the current state-of-the-art GANs for image synthe-
sis? Is there currently any efficient GAN models that reach state-of-the-
art performance for synthetic image generation? What type of GANs
architectures works best for image-to-image translation? Which loss
functions are most effective? And finally: we summarized the datasets
that are widely used to validate different GANs based approaches.
Milestones of GANs for generating synthesis images are listed in Fig. 2.

In this paper, we provide an empirical comparative study of GAN
models for synthetic image generation. We show how GAN can be
trained efficiently to learn hidden discriminative features. For fair com-
parison between the tested approaches, we used a common framework
in Python and Tensorflow to train the models with 4 NVIDIA GTX
Geforce 1080 Ti GPUs. The outline of our review contains the definition
of the problems, a summary of the main GAN methods, and the detailed
coverage of the specific solutions. We reserve a detailed section for all
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the synthetic image generation benchmarks that are related to GANs.
Moreover, this survey discusses the advantages and disadvantages of
current GAN models with the mathematical foundations and theoretical
analysis. Finally, an accompanying web-page as a living repository of
papers that address GANs for image synthesis problems is structured
based on our taxonomy. This web-page will be continuously updated
with new studies and approaches https://github.com/pshams55/GAN-
Case-Study. The main contribution of this paper can be summarized as
follows:

» A taxonomy of recent applications of GANs for synthetic image
generation in various domains under two categories: single-stage
and multi-stage models.

» Review of the architecture of state-of-the-art models designed for
GANS.

» We provide the details of performance metrics that are generally
use to evaluation the GAN models and datasets.

» We provide the community a live repository which contains the
source codes, datasets and papers that are discussed in this survey.
It also will be updated monthly.

The rest of the paper is organized as follows. The next section
reviews the core concepts of GANs. Section 3 discusses different loss
functions that are used in GANs. Section 4 discusses the most com-
monly used datasets for evaluating GAN models. Section 5 presents
the approaches that are used in image synthesis. Section 6, evaluated
the methods that are used for image-to-image synthesis, and possible
future research areas. In Section 7, we present a summary discussion
and discuss limitations of GAN based methods.

2. Related work

In this section, we first enlist some of the famous works that have
benefited from GANs, then we focus on the various applications in-
cluding medical imaging and image-to-image translation. The literature
review shows few review papers on GAN architectures and perfor-
mance are available [31,46,47]. Those works mostly focused on the
performance validation for the different types of GANs architectures.
The others works are limited because the benchmark datasets do not
reflect the diversity in a proper way. Hence, the results mostly focus
on image quality assessment, which may discount GANs effectiveness
in generating diverse images [48]. In this paper, we gather a wide range
of GAN models and discuss them in details. To avoid interruptions in
the flow of our exposition, we first present the original GAN definition
and then illustrate its variations in next subsections. A generative G
parameterized by 6 and receives random noise z as input and output
will be sample G(z,0). Hence the output can be a sample generated
from the distribution: G(z, §), p,. Moreover, there are a massive training
data x received from p,,,, and the objective of the G is to approximate
Pyaa While using p,. The basic architecture of GAN is presented in
Fig. 3(a). GAN [2] contains two different neural networks: a generator
G that as a input receives random noise vector z, and produces synthetic
data G(z), the discriminator D gets both the real data x and the
generated data G(z) as an input and distinguishes the real sample from
the fake one, as presented in Fig. 3(a). In general, both G and D have
neural network architectures. The first architecture of GAN [2] uses
fully connected layers FC as the base network. Later, Radford et al. [3]
introduced a deep fully convolutional neural networks in GAN which
improves the results, and it was the start to largely use convolution
layers in many GAN models. Additional details regarding convolution
arithmetic can be found in [14]. The main idea for training the GAN
is to organize a two-player min-max game in which the G attempts
to produce accurate data for D which tries to recognize the real data
from the fake ones [2]. The value function is describes in Eq. (1) where
Paara(x) signifies the real data distribution and p,(z) represents the noise
distribution.

mGin mgx V(G, D) = EXNPd“Ia(X)[log D(x)]+

E._p »[log(l - D(G(2)))]

(€8]
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Table 1
Summary of GAN surveys for different applications since 2017.
Title Conference/Journal Year Short descriptions
An Overview and Comparative Analysis on Major Generative Models NeurIPS [32] 2017 Short survey statistically evaluates four important generative model:
VAE, WGAN-GP, WINN, and DCGAN, over CIFAR-10 and CelebA
Generative Adversarial Networks: An Overview IEEE SPM [31] 2017 It provides an overview of GANs for the signal processing
community, speech and natural language processing
A Large-Scale Study on Regularization and Normalization in GANs JMLR [33] 2018 Discusses the impact of regularization and normalization schemes
on GANs training; authors provide the important evaluation metrics
in GANs methods
Efficient GAN-Based Anomaly Detection ICDM [34] 2018 Short review of GAN-based anomaly detection methods
Generative Adversarial Network in Medical Imaging: A Review MedIA [35] 2019 A broad survey of the advanced methods in medical imaging using
the adversarial training scheme with a comprehensive evaluation
results
Adversarial Training in Affective Computing and Sentiment IEEE CIM [36] 2019 A brief review for GANs architectures in term of stability and
Analysis: Recent Advances and Perspectives efficiency
Stabilizing Generative Adversarial Network Training: A Survey ICML [37] 2019 This survey provides a brief explanation towards stabilizing the
GANs training process; categorizing the issues in the training GANs
Generative Adversarial Networks in Computer Vision: A Survey and ArXiv [38] 2019 This paper reviewed and critically discussed the most popular
Taxonomy architecture-variant, and loss-variant GANs.
How generative adversarial networks and their variants work: An ACM CSur [39] 2019 A brief review of GAN-based methods
Overview
A Survey on GANs for Anomaly Detection ICML [40] 2019 Discusses the efficiency, structure and empirical validation of the
main GAN models that are proposed for anomaly detection
A Survey on Deep Learning in Medicine: Why, How and When INFFUS [41] 2020 A brief review focus on the deep learning and GANs applied in the
medicine
Single Image Deraining: From Model-Based to Data-Driven and IEEE TPAMI [42] 2020 A Comprehensive review of deraining methods over the last decade
Beyond (using GANs & CNNs)
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Fig. 3. GAN architectures and its variations.(a) Shows the basic architecture of a GAN [2]; (b) Shows the conditional GAN, introduced in [43] that perform class-conditional
image synthesis; (c¢) Shows the architecture of InfoGAN [8] and ACGAN [44]; and (d) Shows the BAGAN architecture [45].

G, D is a generator and discriminator, G maps z into the element X,
and D takes both the input from the input x and z to classify them as
real or fake/ generated samples. If a sample comes from real input x,
D will maximize its output, while if a sample comes from G (generated
samples), D will minimize its output, thus, the 2nd term of the Eq. (1)
(log (1-D(G(2)))) will be appeared. This adjustment led to two aspects.
(i) The decision boundary made by D disciplines enormous error to
the created samples that have distance from the decision boundary,
thereby helps the "bad" produced samples moving toward the decision
boundary. This approach is helpful for generating high quality images;
(ii) The produced samples that are not close to decision boundary
can deliver more gradient when updating the G, which solves the
vanishing gradient problems of GAN training. Fig. 4 shows the training
steps of a standard GAN on MNIST dataset. It is worth mentioning that,
there are three key challenges with the GANs [37]:

* Mode collapse: Concerns are not restricted to the process of reach-
ing the equilibrium. One of the most frequent failures of GANs
is mode collapse, which occurs while the G maps various diverse
inputs to the same output.

+ Vanishing gradients: For optimal training of a GAN, both G and
D need to generate valuable feedback. A well-trained D squashes
the loss function to 0, consequently, gradients are approximately
zero, which delivers a small number of feedbacks to the G that
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resulted in slowing or completely stopping the learning. Equally,
an inaccurate D generates wrong feedback which misleads the G.

+ Convergence: Although the presence of a global Nash equilibrium
has been proven, arriving at this equilibrium is not very simple.
GANs frequently launch oscillating or cyclical behavior and are
prone to converge to a local Nash equilibrium, which can be
subjectively far from the global equilibrium.

The following sections present an overview of GAN architectures to
address the above problems. In this paper, we review the synthetic
image generation and identify different networks, wherein the earliest
paper was proposed in 2014 [2]. These techniques are grouped based
on five main criterias: network design; learning strategies; supervised
methods; unsupervised methods; domain adaptation and other methods
(see Table 2). As illustrated in Fig. 1 generation of synthetic images
is one of active area of research in the recent years. In this review, we
only focused on state-of-the-art image synthesizes techniques, and more
than 200 research contributions are included. In addition, We used
published codes by authors on Github to reproduce some results that
are shown in this paper. We finish this survey by identifying directions
for the future works. To design the first architecture of GAN, fully
connected (FC) neural networks are used for both G and D [2] to
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Fig. 4. Throughout the training, the G is tries to generate a distribution of samples
which have similar distribution to real data. Generally, the GANs are represented by
the learned parameters (weights) that have been captured from G and D.

generate fake images based on Toronto Face Dataset,’ MNIST [49] and
CIFAR-10 [50]. Chen and Jiang [51] proposed a GAN framework based
on FC layers for building occupancy modeling which only shows high
performance on few sets of data distributions. Later, other types of GAN
are proposed that we discuss them in the following sections.

2.1. Convolution GANs

Moving from FC to convolutional neural networks (CNNs) is suit-
able for the image data. Previous experiments have shown that it
is extremely difficult to train G and D while using CNNs, mostly
due to five reasons: Non-convergence, Diminished gradient, Unbalance
between the generator and the discriminator, model collapse, hyper
parameter selections. One solution is to use Laplacian pyramids of
adversarial networks [52]. In this model, a real image is converted into
a multi scale pyramid image, and a convolutional GAN is trained to
produce multiscale and multi-level feature maps where the final feature
map can be derived by combining all of them. The Laplacian pyramid
is a linear invertible image demonstration containing band-pass images
and a low-frequency residual.

@

where k is the number of levels in the pyramid, I denotes the image
and u(.) is the upsampling operator that smooths and expands I to
the double size. Hence u(/) is a new image size. The factors h; at
different k level of the Laplacian pyramid ¢, (/) are created by com-
puting the variance between adjacent levels in the Gaussian pyramid,
h; = I,. To reconstruct an image from a Laplacian pyramid coefficients
[A, hy, ..., hg] is achieved by applying the regressive recurrence and
started with I, = h as follows:

by = £,(I) = Go(I) — (G (1) = I, —u(I, )

Iy = u(lpy ) + hy 3

Following training, the model has a set of generative convent mod-
els {Gy, Gy, ...,Gg}, while each of them captures the distribution of

1 https://inclass.kaggle.com/c/facial-expression-prediction2
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coefficients h, for images at a different scale of the network.

4

At the initial step the model starts by I,,; = 0 and at the final
level G, produces a residual image I, by expending noise vector
z, : I, = G,(z;). Radford et al. [3] introduced a deep convolutional
GAN that enables smooth training for both G and D. This model uses
the stride and fractionally-stride convolution layers which support the
spatial down and up sampling operators to be significantly learned
throughout the training. The role of these operators is to manage the
changes in sample distributions and rates. For the 3D synthesize data
generation, Wu et al. [53] presented an architecture that uses auto-
encoder and long-range context information to directly reconstruct a
3D objects from a 2D input images. However, this work suffers from
high computational cost. Guibas et al. [54] proposed a new, two stage
model by using dual network for generating synthetic medical images.
Despite, the model has a lightweight network but the results are limited
and the network is trained on a small size dataset.

T = ul ) + hy = u(T 1) + Gz ullig)

2.2. Conditional GANs

In [43], the authors proposed conditional GANs as a solution for
image-to-image translation problems. The proposed model not only
learns the mapping from input image to output image, but also adopted
a loss function to train this mapping. This approach provides the
opportunity to apply the same generic method to the problems that
traditionally would need complex loss formulations. The architecture
is shown in Fig. 3(b). As compared to the other GAN architectures,
the conditional GANs have significant performance on the multi-modal
data in comparison with [11,62,107]. On the other hand, InfoGAN [8]
was another development that uses the mutual information between a
small subset of the latent variables to gain semantic information. The
architecture is presented in Fig. 3(c). Such model can be applied to
determining different objects in an unsupervised way and also all the
produced samples by InfoGAN are semantically well meaningful. Zhou
et al. [108] introduced a normalization technique with conditional GAN
that limits the searching space of the weights in a low-dimensional
manifold. In [109,110], the authors proposed a conditional adversarial
network for energy management systems. Their method is demon-
strated to converge faster in term of number of epoch, but the authors
did not highlight the model complexity. Odena et al. [44] proposed
a novel GAN classifier (ACGAN) in which the architecture is similar
to Infogan. In this model, the condition variable ¢ will not be added
to the discriminator, and an external classifier is applied to predicting
the probability over the class labels. The loss function is optimized
to improve the class prediction. In [45], the authors proposed a data
augmentation with balancing GAN (BAGAN) the architecture shows
in Fig. 3(d). Class conditioning is applied in the hidden space to run
the generation procedure towards the objected class. The G in the
BAGAN is adjusted with the encoder module that enables it to learn
in the hidden space. The structure of BAGAN is similar to InfoGAN and
ACGAN. However, BAGAN only generate a single output but, InfoGAN
and ACGAN have two outputs. In [111], the author presented a deep
conditional GAN model that takes its strength from the semantic layout
and scene attributes integrated as conditioning variables. This approach
able to produces realistic images under different situations, with clear
object edges. Fig. 5 compares the generated images by InfoGAN and
ACGAN on CIFAR-10.

2.3. Auto-encoders GAN

The auto-encoders networks have great performance in different
computer vision tasks. Such networks are generally composed of one
encoder and one decoder. In such networks, the model learns a de-
terministic mapping via the encoder and the decoder. Combination
of these two modules helps the network to reconstruct images that
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Table 2
Tools available to researchers for addressing a synthesis image problem.
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Methods used in GANs for Image Synthesis Generation

Network Design Learning Strategies

Supervised Methods

Unsupervised Methods Domain Adaptation Other Methods

Residual Learning [55]
Recursive Learning [18]
Multi-path Learning [64]
Channel Attention [69]
Advanced Convolution [75]
Pixel Learning [59]
Pyramid Pooling [84]

Curriculum learning [56]
Multi-supervision [59]
Loss functions: |
o Content loss [70]
o Adversarial loss [76]
o Cycle Consistency loss [80]
o TV loss [85]
o Prior based loss [89]
o Variation loss [91]
o Identity Preserving Loss [95]
o Dual Learning Loss [17]
o Style Loss [101]
o Pixel Loss [103]
o Texture Loss [105]

cGAN [43]
PLDT [60]

CC-GAN [71]
GONet [81]

SLSR [92]
SS-GAN [96]

SDF-MAN [65]
FusedGAN [77]

GraphSGAN [86]
SCH-GAN [82]

SD-GAN [57] ADDA [58] Context Fusion [53]
DTN [61] CycleGAN [62] Multitask learning [63]
DualGAN [66] DiscoGAN [67] Self- Ensemble [68]
In2i [72] AugGAN [73] Network interpolation [74]
IR2VI [78] CoGAN [79] Feature Constancy [64]
SCH-GAN [82] DISE [83] Distance Constraint [3]
UNIT [87] CatGAN [88]

XGAN [1] CGAN [90]

CCD-GAN [93] CDADA [94]

GANVO [97] Improved DTN [98]

GcGAN [99]

CyCADA [100]
GM-GAN [102]
WaterGAN [104]
Vos-GAN [106]

InfoGAN

Fig. 5. Sample generated results by InfoGAN [8] and ACGAN [44] on CIFAR-10.

look similar to the original one. Auto-encoders generally for learning
follow the non-linear mappings in both directions. In [112], the authors
suggested to combine auto-encoder [113] with GAN [2] to collect the
advantages of both the models, where GAN can produce sharp images
however lost some features. On the other hand, images generated by
auto-encoders [113] are blurry but the model is efficient and accurate.
Fig. 6(a), illustrates the architecture of the adversarial auto-encoders.
In this model, the auto-encoder part normalizes the encoder E by
regulating the distribution (z ~ N(0, 1)), and the model loss formulated
as Eq. (5):

(5)

while z E(x) q(z|x); x G(z) p(x|z) and Dy, is the
Kullback-Leibler divergence. Moreover, auto-encoder GAN [112] used
the reconstruction loss of Auto-Encoder for D to check how similar
the generated samples looks against the real samples and also guide
the generator to produce more similar samples. Donahue et al. [114]
introduced a Generative Adversarial Networks called (BiGAN), to pro-
duce valid inferences. Fig. 6(b) shows the architecture of BiGAN. An
encoder is added to these models, in addition to the generator and
discriminator, to map the generated data back to the latent space. This
approach uses the encoder in the discriminator as a feature capture
tool. In [115], the authors proposed an Adversarial Learned Inference
(ALI) that uses the encoder for latent learning. The proposed model
is efficient and a wide range of evaluations is presented. These auto-
encoder structures suffers from the generation results. [114] and [115]
are proposed to address the problem of uninformative latent space in
the GAN technique by matching the joint distributions of the real data
and latent variable, however, the objective functions do not rely on the
relationship between the latent variables and the observations, thereby
they could not achieve a faithful reconstruction performance.

Ulyanov et al. [76] proposed a model that uses the encoder in
the generator “Adversarial Generator-Encoder Network (AGE)”, in which

CaEGAN = —Eq(xix) 10glp(x|2)] + D (q(z]|x) || p(x))

~ = ~ =
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the adversarial loss is applied between the generator and the encoder,
and the network does not require the discriminator. Fig. 6(c) demon-
strates the AGE architecture in which R denotes the reconstruction loss
function. In this model, the aim of the generator is to reduce the gap
between the latent distribution z and the synthetic data distribution,
while the aim of the encoder is to maximize the divergence between
z and E(G(z)). Additionally, the models use the reconstruction loss
function to avoid the possibility of mode collapse. One interesting point
in the [76] is that, if the encoder—decoder models are not explicitly
trained for reconstruction task, this can be done by projecting data
samples into the latent space through the encoder, then pass the in-
termediary points via decoder and projecting them back to the original
data space. In this case, the reconstructions often retain some semantic
features from the original data, while perceptually are different from
the original ones. In [117], the authors introduced a new approach
based on inverse G as the encoder and pre-trained G as the decoder of
an auto-encoder network to train the inverse G model. In this model,
the gap between the input and the output images that are produced by
pre-trained auto-encoder’s GANSs is directly minimized.

Moreover, Lutz et al. [75] introduced the first GAN for natural
image matting. This network is trained to predict appealing alphas
by applying dilated convolution into encoder-decoder architecture to
capture global contextual information and adopting the adversarial
loss to improve the performance of the model in classification of the
composited images.

D)) = N(DEIDE, T ) ®)

Boundary Equilibrium GAN “BEGAN” as shown in Fig. 6(d) adopted
the auto-encoder model for the discriminator [116]. In comparison
with the standard optimization, BEGAN produces the auto-encoder loss
distributions by using a loss extracted from the Wasserstein distance.
This optimization supports G to produce more realistic data. Since
the synthetic data distribution is very close to 0 and the real data
distribution has not been used to lean the model, therefore D at early
stage is not able to well distinguish the generated samples. Moreover,
the reported set of images for experimentation is small.

2.4. Progressive and auxiliary classifier GAN

In progressive GANs, the model expands the architecture of the
standard network [118] where the idea was extracted from progressive
neural networks [119]. This model has high performance as it can
receive additional leverage via lateral connections to earlier learned
features. This architecture is widely used for extracting complex fea-
tures. For training, the model starts with low resolution images and
progressively G and D grow to reach the desirable results. It is worth
of mentioning, during this growing process, all the variables remain
trainable. This progressive training strategy helps the networks to be
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Fig. 6. Architecture of (a) auto-encoders GAN; (b) BiGAN (c) Adversarial Generator-Encoder Network (AGE) [76]; (d) BEGAN architecture [116]. z is the random noise for G
and x is input image. BEGAN deploys an auto-encoder architecture for the discriminator.
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Fig. 7. Architecture of: (a) GAN with auxiliary classifier [44], in which ‘y’ is the
conditional input label and C is the classifier; (b) CycleGAN [62].

of stable learning. Currently, several state-of-the-art GANs adopted
such training strategy to improve their overall performance [120,121].
In [122], the authors adopted the progressive GANs into Autoencoder
network for image reconstruction. The authors claim this model has
promising results in image synthesis and inference. However, the model
is only evaluated in CelebA dataset and the efficiency of the proposed
model is not evaluated.

In order to boost up the performance of GAN for semi-supervised
learning, [44,123] proposed to add an additional precise auxiliary
classifier to the discriminator. Fig. 7(a) represents the architecture
of the auxiliary GAN, in where C denotes the auxiliary classifier.
Auxiliary classifiers provide the pre-trained modules (the network can
be pre-trained on the big datasets such as ImageNet). The results
show an auxiliary classifier GAN can generate sharper edge images
with the ability in handling the collapse problem. The GANs with
auxiliary classifiers had significant performance in applications such
as image-to-image translation [44] and text-to-image synthesis [123].
More examples is given in Table 2.
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Fig. 8. Architecture of; (a) class-condition GAN [124]; (b) optimized GAN [64]. The
model contains two different optimization networks.

2.5. Adversarial domain adaptation

Unpaired image-to-image translation models recently have supe-
rior performance on different domain adaptation tasks. These type of
methods such as, ADDA [58], CycleGAN [62], CyCADA [100], Disco-
GAN [67], AugGAN [73], and DualGAN [66] have almost the same
architecture that makes unpaired image-to-image translation by intro-
ducing the sequence consistency. In addition, Tsai [124] to increase the
visual quality of generated images proposed class-conditional GANSs.
This model uses a non-perturbation based framework that produces
adversarial examples from class-conditional GANs. Therefore, the gen-
erated data will not resemble any similar data and consequently enlarge
example diversity and difficulty in adversarial defense. The architecture
of class-condition GANs shown in Fig. 8(a).

Recently, there is a new model introduced for unpaired images
called CoGAN [79] that the authors proposed to use two shared-weight



P. Shamsolmoali et al.

Horse to Zebra translation and reconstruction

Season translation

Information Fusion 72 (2021) 126-146

Day «<— Night

Fig. 9. Sample generated results using CycleGAN [62].?

generators for producing images of two domains with random noise.
All these models have convincing visual results on numerous image-to-
image translation tasks, nonetheless, large domain shift may degrade
the ability of these methods for generating large-scale training data.
The authors claim efficient training speed along with better image qual-
ity. Fig. 7(b) represents the architecture of cycleGAN. Chang et al. [83]
introduced a domain adaptation adversarial network for unsupervised
segmentation, which tries to handover the information learned from
synthetic datasets with ground-truth labels to real images without any
annotation [105]. The authors proposed a domain adaptation method
to separate images into domain-invariant texture and domain-specific
structure, which can further be used for image translation across do-
mains and helps label transfer to improve segmentation accuracy. Fig. 9
shows some sample results generated by CycleGAN [62]. There have
been a wide range of efforts for improving and applying CycleGAN in
other domains. In [107], the authors proposed to change the structure
of the network and adopting U-Net [125] to generate more realistic
images, and in [126] dual discriminator is applied in the network to
effectively diversify the estimated density in capturing multi-modes.
Fig. 10(a) represents the training loss of CycleGAN on different setting.
Wang and Zhang [88] introduced an efficient solution for transfer GAN
to domain alignment. The basic principles of proposed model focus on
the domain generation and adaptation. The proposed network com-
prises of two slim and symmetric sub-networks, which then formulates
a coupled adversarial learning framework. Hong et al. [90] introduced
a novel structured domain adaption model for multiple image semantic
segmentation, this work integrates GAN into the FCN to minimize the
source and target domain gaps. Specially, the generator is learned to
convert features of synthetic images to be quite similar to a real-image
features, and a discriminator is trained to differentiate the real images
from the generated ones.

Teng et al. [94] presented a classifier-constrained adversarial do-
main adaptation model for cross-domain semi-supervised classification
which only tested on a small size remote sensing image dataset. Polyak
et al. [98] proposed an unsupervised domain adaptation GAN which is
based on discrepancy to handle the problems regarding image mapping
between different domains. In [127], the authors proposed a GANs
model that has high accuracy performance on high-dimensional data.
An approximator network is adopted into the GANSs architecture to gen-
erate a rich set of features. Therefore, the model has high scalability and
ability to handle complex probability distributions. The architecture
this model shown in Fig. 8(b). Wang et al. [59] proposed a weakly
supervised adversarial domain adaptation to improve the segmentation
performance from the synthetic data, which consists of three networks.
The detection model focuses on detecting objects and predicting a
segmentation map, the pixel-level domain classifier attempts to distin-
guish the domains of image features, an object-level domain classifier
discriminates the objects and predicts the objects classes. On the other
hand, in [63] the author proposed a model to enhance the ability of

2 https://github.com/junyanz/CycleGAN.
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the conditional GANs. The proposed model evaluated on large set of
datasets and multiple tasks. The experimental results show that this
model has the ability to successfully align the cross-domain images
without paired samples. Moreover, [128] proposed a cross-domain
regulated GAN for synthetic 3D face generation. Table 2, describes the
set of tools available to a researcher for addressing a synthesis image
problem.

3. GANs and loss-variants

Changes in the loss functions resulted in GANs Loss-variant. Sev-
eral works [64,129] have already improved the optimality and the
convergence of GANs training, but still unstable training is the major
issue of GAN models. The fault is initiated by the global optimality
which is pointed in [24,25]. The global optimality is determined while
an optimal D is gained for a particular G. The optimal D can be
achieved, whenever the derivative d of the loss in Eq. (2) equals to
0. Consequently we have,

Pg(x)
1—d(x)

pr(x)
Pr(x) + pg(x)

pr(x)

—m =0; D*(x)=

@)
in which X is real data, D*(x) is the optimized discriminator, p,(X)
is the distribution of real data and p,(X) is the distribution of the
generated data over real data X. By having the optimal D, the loss of G
can be rephrased by adopting D*(X) into Eq. (2):

()
fo = By log — 2
1P X)) + py ()] ©
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Eq. (8) shows the loss function of a GAN while having optimized the
discriminator and it is based on two fundamental probability measure-
ment metrics. One is Kullback-Leibler KLdivergence which is formu-
lated as:

p
KZ(py |l pp) = E,.p, log p—l, ©)]
2
Another is Jensen-Shannon JS divergence which is defined as:
1 py+p 1 Py +p
ISy || p2) = S KEGy 1| F52) + KAy | =52). 10)

thereby, the loss of G based on the optimal D*(.) in (8) can be stated
as:

£ =275(p, |l pg) —2log2 (1n

which shows that the average loss for G now resulted from the mini-
mization of the JS divergence between p, and pg- In [38] the authors
extensively reviewed the GAN'’s loss functions. In [130], the authors
demonstrated that the optimization of least square GAN equals to
decreasing the difference in the Pearson y* divergence between p, + p,
and 2p, when a, b and « fulfill the condition of b—c =1and b—a =
2. Fig. 12 illustrates the dynamic results of Gaussian kernel density
estimation. It can be observed; regular GANs suffer from mode collapse.
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Fig. 11. Sample training results of different iterations on FashionMNIST dataset using DCGAN [3].*

They generate samples nearby a single valid mode of the data distri-
bution. On the other hand LSGAN [130] learns the Gaussian mixture
distribution successfully. Moreover, Zhou et al. [131] statistically study
the details of the existing variants of GANs that take the advantages
of class label information. Based on class aware gradient and cross-
entropy decomposition, the authors proposed a model called Activation
Maximization GAN as a solution to enhance the GAN training. A wide
range of experiments have been conducted to evaluate the efficiency
effectiveness of the model. Qi [64] introduced loss sensitive GAN to
train a generator to create more realistic images by minimizing the
boundaries between the real and fake samples. The author states that,
the training issues such as model collapse and vanishing gradient
influencing the original GAN with a non-parametric hypothesis that the
discriminator has the ability to detect any type of distribution between
the real and fake samples. As previously discussed, sometimes there is
an overlapping between the real and fake samples distribution which
is ignorable. In the loss sensitive GAN, the classification task of D is
limited and is learned by a loss function L, parameterized with 6,
which expects the real samples to be of smaller loss than fake ones.
For the training of this loss function, the following limitations are
applied:

£o(x) £ 24(G(2)) — A(X, G(2)) 12)

in which A(X, G(z)) determines the divergence gap between the real and
fake samples. This restriction results in the separation of a real sample
from the generated ones by a margin of A(X, G(z)). The loss sensitive
GAN is optimized as follows:

min(¢ p) = Exp, 0o (X)+

FE,, (AX.G(2) + £4(X) = £4(G(2) ), 5)

min(Zg) = E,., £5(G(2)).

while the balancing parameter A is positive then (a) = max(a,0). To
the second term of Eq. (13), A(X,G(z)) is added to optimize D and
prevent it from separating the real samples from the generated ones.
Tolstikhin et al. [132] proposed a method, called AdaGAN, in which
every steps take a new component into a model by running a GAN
process on a re-weighted sample, which motivated by boosting algo-
rithms. The authors prove that progressive procedure leads to better
convergence and the true distribution. The experiments illustrate that
this procedure addresses the problem of missing modes. In [133,134],
the authors proposed a model which has GANs structure to convert a
simple distribution to a data distribution in the latent space by training
the discriminator between a simple distribution and a latent-space data
distribution. Zhang et al. [135] proposed an adversarial information
maximization model, to handle the diversity issue of generated sam-
ples. The model regularly compares synthetic and real samples and
accordingly updates the G and D to enhance the performance.

4. Datasets

The first step in building a GAN model is to collect enough numbers
of training datasets for the discriminator to train the network. Once a
sufficient amount of data has been collected, we can implement GAN
for already existing datasets to learn and then apply the same imple-
mentation on the newly created dataset. In this section, we summarize
some of the existing datasets that are widely used in evaluation of the
current approaches.

+ MNIST: this database is a handwritten digits that contains 60,000
training samples, and 10,000 testing samples. The size of each
image is 28 x 28 and linearized as a vector of size 1 x 784.

3 https://www.flickr.com/photos/aaefros
4 https://github.com/carpedm20/DCGAN-tensorflow
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Fig. 12. Dynamic results of Gaussian kernel for regular GANs and LSGANs on CIFAR-
10 dataset. Red portions represent real samples and Blue portions signify generated
ones. GAN almost in all the steps generated the synthetic samples that are very close
to their corresponding original (target) samples.

Therefore, the training dataset and test one have 2-d vectors of
size 60000 x 784 and 10000 x 784 respectively.

Fashion MNIST: this new dataset contains 60,000 samples for
training set and 10,000 samples for testing. Each image sample
has 28 x 28 grayscale size and in total there are 10 classes.
CIFAR-10: this dataset contains 50,000 training samples and
10,000 testing samples. Each color sample has 32 x 32 size and
in total there are 10 classes, with 6,000 image samples per class.
CIFAR-100: this dataset is similar to CIFAR-10, the difference
is that, it has 100 classes and each containing 600 images. Each
class contains 500 training and 100 testing samples. The images
are well labeling and have high resolution.

CelebA: this dataset contains more than 200,000 celebrity face
images, each sample has 40 attribute annotations and the images
cover large pose variations and background clutter.
Cityscapes: this dataset consist of a various set of video se-
quences recorded in street from several cities, with high quality
pixel-level annotations of 5,000 frames plus a larger set of 20,000
weakly annotated frames.

Toronto Faces Dataset: this large dataset consist of 32 x 32
grayscale images that contain faces that have been take out from
different sources. All subset of the faces have been well labeled.
UT Zappos50K: this dataset contains 50,025 catalogs of shoe
images that collected from Zappos.com. These images are sepa-
rated to 4 major categories “shoes, sandals, slippers, and boots”,
functional types and the individual brands.

ImageNet: this image database is mainly collected to be used
for object recognition and contains more than 14 million images
in 20,000 categories, which hand-annotated.

Van Gogh: this dataset consists of 1,000 Van Gogh paintings
images that captured from the Amsterdam museum.

DSLR: this dataset consist of 22,000 images, containing 4549
photos from Sony mobile phone, 5727 from iPhone and 6015
photos from BlackBerry, for each mobile phone photo, there is
a corresponding photo from the Canon DSLR. The photos have
been captured in the daytime in a several places and in various
illumination and weather conditions.

Caltech-UCSD Birds-200-2011: the dataset consist of 200
categories and in total 11,788 bird images. Each image has 15
Part Locations, 312 Binary Attributes, 1 bounding box.

SVHN: contains more than 600,000 high resolution digit im-
ages which generally do not require any preprocessing and ob-
tained from house numbers in Google Street. This dataset contains
73,257 training samples, 26,032 testing samples, plus 531,131
samples that can be used for extra training.

FaceScrub: the dataset consists of 106,863 face images of 530
male and female celebrities, and in average 200 images from each
person.
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» Paris StreetView: this dataset contains 6412 sample images
that collected from Flickr by searching for the specific Paris
monuments.

YouTubeFace: this dataset contains near to 3425 videos from
1595 different persons. These videos are downloaded from
YouTube. The shortest clip length is 48 frames, the longest one is
6070 frames, and the normal length of the video clips are 181.3
frames.

CartoonSet: this dataset contains cartoon face that composed
of 16 modules including 12 facial features and 4 color features
which are selected from a discrete set of RGB values. The dataset
has 9000 cartoons.

SENSTAC: this is a large-scale image dataset that used for object
recognition. It consists of 207 GB of middle-wave infrared videos
and 106 GB of VI videos that manually labeled.

5. Synthetic image generation methods

In the last few years synthetic data is widely used to overcome the
burden of generating large datasets for training CNNs. A wide variety
of data synthesis methods have been proposed in literature, starting
from photo-realistic image reproduction [136-138] and learning-based
models for synthetic image generation [4] to approaches for data
augmentation that automated the operation for producing new sample
images from actual training set [139,140]. Conventional data aug-
mentation methods have used image transformations that keep class
labels [141], while recent approaches [140] introduced a more general
image transformations method, involving image composition. Synthetic
data generation methods must generate data that have three significant
features. It should be (a) effective: produce meaningful and sufficient
data samples, (b) task-aware: create samples that contribute for better
performance of target network, and (c) realistic: produce realistic sam-
ples that assist in minimizing domain gaps and enhance generalization.
In this section we briefly discuss the main methods that are used for
synthetic image generation.

5.1. Single-stage methods

The approaches in this section follow the standard form of GAN
for just using a single G and D in their architectures, and G and D
have simple networks without additional connections. Radford et al. [3]
introduced deep convolutional generative adversarial networks (DC-
GANSs), which have some architectural constraints that have strong
performance for unsupervised learning that has high efficiency and
accuracy. Some sample training results of DCGAN on Fashion MNIST
dataset are shown in Fig. 11. Salimans et al. [4], proposed a mathe-
matical model to improve the semi-supervised training of GANs and
highly realistic. The model tested on wide range of datasets includ-
ing ImageNet and was able to generate recognizable features. Zhao
et al. [17] proposed a cross-domain image captioning approach that
uses a novel dual learning mechanism to overcome generating image
problems of GANs. Lee and Seok [142] introduced ControlGAN to
manage the random distribution of produced samples by separating dis-
criminator from classifier. In ControlGAN the generator is intended to
produce synthetic images with the precise detailed. On the other hand,
Mukherjee et al. [143], introduced ClusterGAN as a new mechanism
for clustering by sampling latent variables from a mixture of one-hot
encoded variables and continuous latent variables which has similar
structure to ControlGAN. Zhong et al. [144] also proposed a new
model, called decoder-encoder generative adversarial networks, which
take both the advantage of adversarial training and the variational
Bayesain inference to increase the quality of generated images. Such
methods are relatively convenient to implement as compared to multi-
stage and hierarchy methods, and these methods generally achieve
good results. Bhattarai et al. [145] proposed an efficient light weighted
model for synthetic image generation utilizing the learning parameters
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model to learn the latent representation. Right: Two-pathway network combined with
self-supervised learning, which can learn complete representations.

during training. These include discriminator’s realism confidence scores
and the confidence on the target label of the synthetic data. In addi-
tion, they adopted a reinforcement learning algorithm to automatically
search a subset of meaningful synthetic examples from a large pool of
generated data. In Fig. 10(b), we compare the training loss of G and D
in DCGAN [3].

5.2. Multi-stage methods

Opposite to the single-stage methods, the multi-stage methods use
multiple generators and discriminators in their architectures, in which
different generators are in charge of different tasks. The idea behind
those approaches is to distinct an image into different portions, for
example, “foreground & background” and “styles & structure”. It
is worth to mention that, the generators either works in a parallel or
sequential way. Hong et al. [5] proposed to train the GANs with a
combination of generators to prevail the mode collapse problem. The
key idea is to use multiple generators, in place of a single one. This
architecture, proven to be highly operational at covering diverse data
modes, which handle the collapse problem. Wang and Gupta [146]
introduced to use two GANs. However, the authors show limited ex-
periments and did not discuss the computation cost of the proposed
model. The Structure-GAN [147] adopted the DCGAN [3] structure
with some modifications. In Structure-GAN [147], the created samples
and the noise vector feed to some convolution layers, and at the end
the results are merged to create one single tensor which will goes
through other transport layers. Structure-GAN [147] composed of fully-
connected network that changes an image into normal map. The only
drawback of the [147] is that it requires using additional features to
gain ground-truth for the surface mapping. Tian et al. [148] introduced
CR-GAN which, besides the single reconstruction path, has a generator
unit to maintain the learning. These two learning pathways are equally
collaborate for sharing the parameters for improving the generalization
ability.

Fig. 13 demonstrates the difference between the single-pathway
and two-pathway networks and Fig. 14 contains some samples of face
style transferring. We generated these results based the codes provided
in [126] on CelebA dataset. This model uses the attribute image as an
identity to create a corresponding conditional vector by incorporating
an additional face verification network, for producing high-quality
results via a multi-paths network. Choi et al. [149] proposed Star-
GAN, which is a scalable model that can perform image-to-image
translations for multiple domains. The integrated model architecture
of StarGAN allows simultaneous training of multiple datasets within
different domains of a single network. However, this model requires
parallel utterances, transcriptions, or time alignment procedures that
decline the efficiency. Later, StarGAN-VC [150] was proposed to handle
the limitations of the preliminary version [149]. StarGAN-VC [150] si-
multaneously learns many-to-many mappings across different attribute
domains using a single generator network, it also able to generate
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Fig. 15. FID comparison of five multi-stage GAN models while training on CelebA.

converted speech signals quickly enough to allow real-time imple-
mentations and only requires several minutes of training to generate
reasonably realistic data.

Reed et al. [151] was the first work that successfully generated plau-
sible images for birds and flowers from their text descriptions. Later,
SatckGAN [19] is proposed which is the improved version of [151].
It has only two layers of the generators. The generator takes (z,c)
as input and outputs a blurry image that can present an irregular
shape with blurry details of some objects, whereas the second generator
as input receives (z,c¢) and the output of the previous generator and
then produces an image with more realistic details. In addition, the
proposed StackGAN [19] improves upon the preliminary study [151]
in terms of accuracy, but a look at the structure has a lot to an-
swer, especially about the quantification of speed improvements which
is very important in this context. Fig. 15 compares the Fréchet In-
ception Distance (FID) scores of DCGAN [3], Structure-GAN [147],
CR-GAN [148], StarGAN [149], and StarGAN-VC [150] while training
on CelebA dataset. Fig. 16 presents some generated sample results from
StackGAN [19]. AttenGAN [89] is another latest work that proposed
attentional generative adversarial network that uses attention-driven,
hierarchy network for creating image out of a text. However, the model
suffers from the clarity of the presentation and evaluations. However,
the authors claim better results than [151] in term of inception scores,
nonetheless the results are only empirical and no theoretical analysis is
carried out.

Doan et al. [56] introduced a method for training the G against
an ensemble of D. This problem formalized within the full-information
adversarial framework, where the ability of the algorithm is assessed
to select combinations of D, for providing the G with response dur-
ing learning. Hence, a reward function is used which returns the Gs
progress and accordingly update the combination weights allotted to

5 https://github.com/bluer555/CR-GAN
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Fig. 16. Generated samples of flowers by StackGAN [19].°

each D. Pu et al. [65] proposed to fuse disparity maps from different
sources, while incorporating additional information (intensity, gradi-
ent, etc.) into a refiner network to better refine the raw disparity inputs.
In [80], the authors proposed a model called Photo-Sketch Synthesis
by using multi-adversarial networks, iteratively the proposed model
generates low resolution to high resolution images in an adversarial
way. The hidden layers of the generator are supervised to first create
lower resolution images followed by inherent refinement through the
network to form more realistic images. To produce extremely realistic
images, in [80] the network is normalized by adopting forward back-
ward consistency. This is carried out by introducing cycle consistency
losses at different resolution levels, which are formulated as:

Ceyey = IRecq; = Rylly = 1Gp(G4(R ) — Ryl

CYCai
13 = ||Recg; — Rg;ll; = IG4(Gp(Rp)); — Rglly

cyepi

(14)

where R,; and Rp; denote the images in different resolutions and
Rec,; and Recp; represent the reconstruction outputs. In [152], the
authors proposed three approaches for producing music nots by using
GANs. The approaches have different architectures and underlying
assumptions. Bhattacharjee and Das [153] proposed to use two stages
of GANSs to generate crisp and clear set of the future frames. The main
contribution lies in formulating two objective functions based on the
normalized cross correlation and the pairwise Contrastive divergence.
Although the model is well discussed and all the stages of the model
has been evaluated, the overall model’s performance was not compared
with that of the other state-of-the-art models.

Xiong et al. [154] showed the movement of the clouds with a GAN
based two-stage approach to generating realistic time-lapse videos of
high resolution. In their model, the first stage generates videos where
each frame contents realistic objects. In the second stage, the generated
videos of the first stage are improved by enforcing them to be closer
to the real video’s frames with regard to motion dynamics. In [155],
the authors collected wide range of datasets and evaluation metrics for
video description. Park et al. [156] proposed a multi-conditional GAN
(MC-GAN) which manages both the object and background information
equally. The proposed model contains a synthesis block which separates
the object and background information during training. This block
powers up MC-GAN to generate high realistic images by preserving
the background information from the given base images. In [156], also
the authors based on MC-GAN, introduced a model to produce high
resolution images by adding the StackGAN to generator.

Olabiyi et al. [157] proposed an adversarial network to generate
multi-turn dialogue answers. The framework is based on conditional
GANs. The generator is a hierarchical recurrent encoder—decoder net-
work and the discriminator is a RNN that shares context and word
embedding with the generator. Azadi et al. [70] proposed to combine
few-short learning and a double generator adversarial network for font
style transferring that has high computation costs. The study contains
a comprehensive review section, however only few of them used to
evaluate the performance of the model. Yu et al. [158] proposed
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Fig. 17. 3D Completion results on real-world scans. 3D-ED-GAN [18] shows the
low-resolution completion result when going through LRCN.

a symmetric approach for heterogeneous image-to-video adaptation,
which augments deep images and video features by learning domain-
invariant representations of source images and target videos. The model
focuses on unsupervised scenarios where the labeled source images are
accompanied by unlabeled target videos in the training phrase, also
a data-driven approach is presented to learn the augmented features
of images and videos with high transform-ability [159]. Furthermore,
Jang et al. [91] proposed an Appearance-Motion Conditional GAN to
address the challenge of future uncertainty. This model uses motion
information as conditions that specify the futures structure and con-
sequently reduce the uncertainty. This model contains one G, two D
and a ranking module that encourages similar condition videos to look
the same. This technique allows to learn different factors of variation
and perform different gestures, but it requires massive computational
budgets compares to the other methods and also it suffers from motion-
less and blurry effects that caused by the lack of supervision signals or
sub-optimal solutions in the training process. Similar idea can be also
found in [160] which is proposed a novel face sketch synthesis method
by multi-domain adversarial learning.

Unlike [91], this model overcomes the defects of blurs, generate
high quality synthetic data, and reduces the time consuming. The prin-
ciple of scheme relies on the concept of interpretation through synthesis.
In particular, the authors interpret face photographs in the photo-
domain and face sketches in the sketch domain by reconstructing
themselves respectively via adversarial learning.

To further improve the synthesis speed, the authors in [103] intro-
duced a multi modules adversarial network by minimizing a new loss
function consisting of pixel-wise loss, adversarial loss and perceptual
loss in discriminator for visual haze removal. Although, fine textures
could be well generated by using this technique, but deformation and
noise still exist in the results.

5.3. Applications to medical imaging

In general there are two methods to use GANs in medical imaging.
The first one is centralized on the generative phase, which possibly aid
in realizing the primary structure of training data to create realistic
images. This asset makes GANs very capable in handling data scarcity
and patient privacy [161-165]. The second one is centralized on the
discriminative phase, in which the discriminator D can be considered
as a learned prior for wild images therefore it can be used as detector
for fake generated images [166,167].

6 https://github.com/hanzhanggit/StackGAN
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Fig. 18. Reconstruction error of the various 3D GANs models on 3D CAD and MoCap datasets at various training epochs. Reconstruction measures the closeness of the synthetic
results to the training test ground truth distributions.

5.3.1. Generative phase Yang et al. [177], proposed a 3D-RecGAN model, which reconstructs

Sandfort et al. [168] proposed a data augmentation model based the complete 3D structure of a specified object from one random depth
on CycleGAN to improve generalizability in CT segmentation. Han view. Different from the current models which typically needs multiple
et al. [169] proposed a two stage unsupervised anomaly detection views of the same object or class labels to recover the full 3D geometry,

method for MRI scans based on GAN. In [170], the authors compare the proposed model only takes the voxel grid representation of a depth
the results of two unsupervised GAN models (CycleGAN and UNIT) view of the object as input, and is able to produce the complete 3D

for image-to-image translation of T1- and T2-weighted MR images, by occupancy grid by filling in the missing regions. Moreover to optimize
comparing the created synthetic MR images to real images. the generator, a weight g is assigned to the reconstruction loss 1 — § to
t’é AN Therefore, the loss function for G and D defined as follows:

5.3.2. Discriminative phase Cy=Blyee + (L= 5

Tang et al. [171] proposed a method for CT images segmentation < 15)
based on stacked generative adversarial networks. The first network a=%an
layer reduces the noise in the CT image and the second layer creates In [178], the authors proposed an Iterative GANs which iteratively
a higher resolution image with enhanced boundaries. In [172], the transforms an input image into an output image based on the geometry
authors proposed a GANs based on unsupervised learning approach and appearance of the objects. The model is evaluated on the several
which able to identify anomalous images. The proposed model contains dataset, however, the model was not able to generate highly realistic
fast mapping technique of new data to the GAN’s latent space. The samples. Hermoza and Sipiran [179] proposed an encoder-decoder 3D
mapping is based on a trained encoder. Osokin et al. [173] proposed deep neural network on the GAN architecture, combining two loss
GANs model to generate the synthesis of cells imaged by fluorescence objectives: a completion loss and an Improved Wasserstein GAN loss

microscopy. In [174], the authors proposed a CT image denoising for 3D object reconstruction. Achlioptas et al. [74] proposed algebraic
model based on the GANs with Wasserstein distance and perceptual manlpll'la}tlons and a deeg auto—encoder' GAN (AE‘EMD) for semantic
similarity. Dou et al. [175] proposed GANs for MRI and CT to tackle part editing, shape analogies and shape interpolation, as well as shape

the significant domain shift by supporting the feature spaces of source completion for 3D objects. The reconstruction error of the various 3D
and target domains in an unsupervised manner. GAN models on 3D CAD dataset at different training epochs is shown

in Fig. 18.

5.4. Applications to 3D reconstruction
PP 5.5. Image fusion
The methods that are listed in this section are used in 3D shape
completion. Wang et al. [18] proposed a hybrid architecture that used
a 3D Encoder-Decoder generative adversarial network with a recurrent
convolutional network (LRCN). The 3D-ED-GAN is a 3D network that

Generating a new image from the set of input images is an in-
teresting research area in the GANs. In [26] the authors proposed
a GAN-based framework called FusionGAN that generates a fusion
image by manipulating two input images. The authors demonstrated

trained with an adversarial paradigm to fill the missing data in the that FusionGAN is able to change the input shape and characteristics
low-resolution images. Recurrent neural network approach is used and generate a new image, while preserving the main content of the
to reduce memory usage. Fig. 17 represents some shape completion inputs. Zhan et al. [25] proposed a new fusion methods as SF-GAN to
examples on real-world scans. 3D-ED-GAN is used to represent the low- synthesize realistic images from the foreground objects and background
resolution output of 3D-ED-GAN and LRCN. Wu et al. [53], proposed images. The authors proved the effectiveness of their model through a
3D Generative Adversarial Network (3D-VAE-GAN), which generates comprehensive set of experiments. In addition, several methods have
3D objects from a probabilistic space by leveraging recent advances in been proposed using GAN’s architecture in order to transform an input
volumetric convolutional networks and generative adversarial nets. In into a desired shape and improve the fusion performance [24,27,180,
their model, the generator launches a mapping from a low-dimensional 181].

probabilistic space to the space of 3D objects, to directly reconstruct a
3D object from a 2D input image. The proposed model has a simple 5.6. Image completion
structure and the authors clam high reconstruction performance, but

the evaluation results and evaluation parameters are limited. In [176], Image completion, as a conventional image processing task, in-
the authors introduced a new model for GAN training to realize the de- tended to fill the missing or masked parts in images that have rea-
tailed 3D shape of objects. The model adopts Wasserstein normalization sonable synthesized contents. The produced contents are either having
with gradient penalization for training which improves realistic image much detail as the original one, or easily fit into the image con-
generation. This architecture even can reconstruct 3D shape from 2D text which appears to be visually realistic. Most of completion meth-
images and perform shape completion. ods [182]are based on low-level cues to look for patches from neighbor
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Fig. 20. Sample generated results by [43].

regions of the image and create the synthesize contents that are similar
to the patches. Unlike the existing models that look for patches to
synthesize, the model that proposed by [183], produces contents for
missing regions based on a CNN. The proposed algorithm is trained
with number of reconstruction loss, two adversarial losses and a se-
mantic parsing loss, to ensure pixel quality and local-global contents
stability.

In [184] the authors proposed a double path framework for image
completion. One is a reconstructive path that uses a single ground truth
image to get prior distribution of missing parts and recreate the input
image from this distribution. The other one is a generative path in
which the conditional prior is linked to the distribution gained in the
reconstructive path. These methods often fail in human body images
that require accurate structure and appearance synthesis. To tackling
this problem, [185] proposed a double stage method. In which in the
first stage, a complete body part generated from an incomplete one
through a human parsing network, which closely follows structure
recovery within the unknown area through the use of full-body pose
approximation. In the second stage, an image completion network is
employed to fill the new portions, based on the first stage. In [186],
to perform image completion a fusion block is introduced to generate
a flexible alpha composition map for combining known and unknown
regions. The fusion block not only provides a smooth fusion between
restored and existing content but also provides an attention map to
make the network focus more on the unknown pixels. However, the
model shows good performance on celebA dataset but cannot perform
well on high-resolution images as Fig. 19 shows.

6. Image-to-image-translation

Most of computer visions problems can be seen as an image-to-
image translation problem, mapping an image from one domain to
another image in different domain. As an illustration, super-resolution
can be viewed as a concern of mapping a low-resolution image to a
similar high-resolution one; image colorization is a problem of mapping
a gray-scale image to a corresponding color one. The problem can
be investigated in supervised and unsupervised learning methods. In
the supervised approaches, paired of images in various domains are
available [43]. In the unsupervised models, only two separated sets
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Source Generated

Fig. 21. Comparison of generated results and ground truth for face aging on CelebA
datasets by using [188].

of images are available in which one composed of images in one
domain and the other composed of different domain images—there is
no paired samples representing how an image can possibly translated to
a corresponding image in different domain. For lack of corresponding
images, the unsupervised image-to-image translation problem is con-
sidered more difficult, but it is more feasible because training data
collection is easier.

When assessing the image translation problem from a likelihood
viewpoint, the main challenge is to learn a mutual distribution of
images in different domains. In the unsupervised setting, the two sets
composed of images from two minor distributions of different domains,
and the task is to gather the cooperative distribution by utilizing these
images. However, driving the joint distribution from the minor distri-
butions is extremely ill-posed problem [187]. In this section, we discuss
the image-to-image translation methods. Image-to-image translation is
similar to style transfer [101], which as the input receives a style
image and a content image. The model output is an image that has
the content of the content image and the style of the style image. It is
not only transferring the images’ styles, but also manipulates features
of objects. This section lists several models that are proposed for image-
to-image translation from supervised methods to unsupervised ones.
Fig. 20 shows sample generate results by [43].

6.1. Supervised translation

Isola et al. [43] proposed to merge the different network losses of
Adversarial Network with L, regularization loss, therefore the particu-
lar generator not only trained to pass the discriminator filtering but
also to produce images that contain realistic objects and similar to
the ground-truth images. L, generates less blurry images as compared
to L,, it was the reason for using L;. The conditional GAN loss is
formulated as:

£ean(G. D)= Eepyp (llog D(x, y)]+

B biara0z~po (0 [108(1 = D(x, G(x, 2)))]-
in which x,y ~ p(x,y) denotes to the images that have different styles
but belong to the same scene, similar to the standard GAN [2], z ~ p(z)

represents random noise, thereby L, loss for pressuring self-similarity
is defined as:

(16

£1,G)=Eypp oz~ po(@. 1Ny = G2, 1. an
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Fig. 22. Street scene image translation sample results by [87]. For each pair, left is
input and right is the translated image.

the general objective is specified by:
G*,D* = arg™"¢ ™0 £ ;4 (G, D) + At (G) 18)

in which the hyperparameter of 4 is used to balance the two loss
functions. Moreover, in [43], the authors pointed out that, the noise
z does not have noticeable influence on the result, therefore, they
proposed to use the noise in the form of dropout during training and
test in place of samples that belongs to random distribution. In this
model, the structure of the G is based on the new structure of U-
Net [125] that has multi-scale connections to join each encoder layer to
the same layer decoder for sharing low-level information like edges of
objects. In [43] the authors proposed PatchGAN. The proposed model
rather than classifying the whole image attempts to classify the N x N
path of each image and seek the average scores of patches for obtaining
the final score of the image. From the experiments it has been observed,
for obtaining the high frequency details, it is sufficient to limit the
discriminator to focus on the local patches.

Yoo et al. [60] proposed an algorithm for supervised image-to-image
translation, while having a secondary discriminator D, that evaluates
whether or not a pair of images from multiple domains is related with
each other. The loss of D, is calculated as follows:

fpair =-t 10g[D
+(@ — Dlog[1 — D,
0 ifX=2X, 19

stt=30 ifX =X,

0 ifX=X;

pair(stX)]
(X5, X)),

where the input image from the source domain is represented by X, and
its groundtruth image is denoted by X, in the target domain, an irrele-
vant image in the target domain is represented by X;. The generator in
the proposed model transfers X into a single image X, in the associated
domain. In [84], the authors proposed an efficient pyramid adversarial
networks to generating synthetic labels based on target domains for
road segmentation in remote sensing images. Zareapoor et al. [189]
proposed a semi-supervised adversarial networks for dataset balancing
in mechanical devices. In [190], the authors integrate multi-instance
learning into adversarial networks for human pose estimation. As the
results show, the proposed model has high accuracy and fast per-
formance. Shamsolmoali et al. [191] to handle the imbalanced class
problems, proposed a capsule adversarial networks based on minority
class augmentation. In [192], the authors proposed a general learning
framework assign the generated samples to a distribution over a set
of labels instead of a single label. The effectiveness of their proposed
model is proved through a set of experiments. Zhang et al. [193] pro-
posed DRCW-ASEG method in order to generate synthetic examples for
multi-class imbalanced problem. The authors shown that their proposed
strategy is able to improve the classification accuracy.
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Generated results

Fig. 23. Male to female image translation sample results by [79]. For each row, left
is input and right is the translated samples.

Fig. 24. Samples of face to cartoon conversion using XGAN [1] on CelebA dataset.

Leopard albino lions Lion

Fig. 25. Cat to other species translation results by [87].
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Fig. 26. FID comparison of six unsupervised GAN models while training on CelebA.
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Fig. 27. (a) Sample generated results by BEGAN [116], CGAN [90], LSGAN [130], StarGAN [150], and DA-GAN [69] on four image datasets. (b) Comparison between the inception

and FID scores on CelebA.
6.2. Unsupervised translation

Zhu et al. [62] and Yi et al. [66] proposed to adopt a reconstruction
loss to maintain the input image quality after a cycle of alteration.
These approaches share the similar architecture as shown in Fig. 7(b).
The two generators G5 and G, are performing reverse transforma-
tions and gets benefits from dual learning [202]. In addition, another
model is proposed by Kim et al. [67] that adopted a similar cyclic
architecture. In the proposed architecture, two generators are used G 5
to transfer an image from domain A to B and Gy, is used to sends the
image back to the original domain. There are also two discriminators
D, and Dy to distinguish the domain of the image. The adversarial loss

function for G, and Dy is defined as:
£Gan(Gap: Dp) = Epyyp, [log Dp(b)] 20)
+Eqpyoll =102 Dp(G4p(a))]

for Gg, and D, the adversarial loss is defined £, 5 (G4, D4) in which
the data distribution is defined as b ~ pp(, and a ~ p,, in different
domains. The adversarial loss is aimed to reduce the reconstruction
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error once translating an image from one domain to another one and
later translating it back to the original domain, i.e., a - G p(a) —
GpA(G4p(a) ~ a The cycle-consistency loss is determined as:

Ceye(GapGpa) = Egup wllla = Gpa(Gapa)lly]

@1
TEp sl = Gap(Gps(O)I1]
consequently, the overall loss function is defined as:
¢(Gup-GpaDp.Dp) =C5an(Gap, Dp)
+06An(Gpa.Dy) (22)

+47 (G 4. Ggyp)

in which A denotes a hyperparameter for balancing the losses and the
objective function is defined as:

ming BA

max
G* argg . 8P4 1055(G y3. G ga» D g» D)

AB’G

(23)

—
BA —

The architecture proposed in [62,66] follows the U-Net structure
[125]. In [62] the authors stabilized two methods for training. Firstly,
rather than using the log loss [130] for ;4 in Eq. (20) by using
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Table 3
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Briefly Discusses Different GAN-Based Methods. From Left to Right, Methods: its input format, its output format, its characteristic, the loss functions, and the backbone code.

In the column of loss function, L,,, L;, L, Lsges Lips Lsym> Leves Lpvars Lerss Pirs Listens Lwaans Lips LZ‘"

ye?

Lsryres Leontents Lrs Ly, Lg, denote as; Adversarial

Loss, L, distance, L, distance, Segmentation Loss, Identity Preserving Loss, Symmetry Loss, Cycle Consistency Loss, Dual Learning Loss, Classification Loss, Kl Divergence, Latent
Consistency Loss, Cycle-Consistent Loss, Pixel-Wise Identity Mapping Loss, Focal Loss, Style Transfer Loss, Content Loss, Loss Reconstruction, Task Loss, Smooth Loss, Semantic
Consistency Loss, Geometry Consistency Constraint Loss; respectively. In The Column Of Code, T, TF, and PT, refer to Torch, Tensorflow, Pytorch, Respectively.

Model Input ~ Output Characteristics Loss Function Code
BiGAN [114] wild image~wild image A supervised method for feature learning Ly, TF
ALI [115] face~face An unsupervised model which jointly learns a generation network Loun TF
and an inference network
StarGAN [149] face~face An unsupervised model for multiple domains image translations Logy + Lo PT+TF
BicycleGAN [107]  single~multiple An unsupervised model for many-to-one mapping Ly + Lygy + D + Lyercepual PT
CGAN [194] face~face An unsupervised model for conditional based image translation Loan + Lyya TF
ComboGAN [195]  face~face An unsupervised model for multi-domain multi-component image Liyete + Lan PT+TF
translation
CSGAN [23] text~text A supervised model for conditional sequence generation L, TF
DRPAN [196] image~paint A Discriminative unsupervised Region Networks Le+Lp+Li+Ly+Lpp PT
IA-CycleGAN [95]  face~face An unsupervised identity preservation model for Ly+ Loy + Lygan + Liy TF
image-to-video/video-to-image translation
In2i [72] wild image~wild image An unsupervised model for Multi-Image/Multi-modalities Lgan + Ligiem TF
translations
IR2VI [78] wild image~wild image An unsupervised model for thermal-to-visible image translation Leyje + Loan + (L;‘;_’r) PT+TF
MedGAN [197] medical images~medical images An unsupervised model that penalizes the discrepancy between the Ly + Loan + Lyyie + Lyercepat + Leontens ~ TF
translated images and the desired ones
Sem-GAN [198] wild image~wild image An unsupervised framework for GAN consistency Leyere + Lygg + Lo + Ly PT
T2net [199] wild image~wild image An unsupervised widespectrum translator Lo +L, + L, + L PT+T
TC-GAN [6] video~image An unsupervised method with temporal consistency for removing Loan TF+PT
flickering between video frames
Twin-GAN [200] face~carton An unsupervised multi-loss function framework for one-to-one Lygy + Leyere + Liey PT
image mapping
U-GAN [201] face~face Unsupervised dual networks learning Lgan TF
Da-GAN [69] wild image~wild image Unsupervised attention GAN for instance image translation Lo+ Lyy, + Ly, PT+TF
XGAN [1] face~carton Unsupervised image-to-image translation with a dual adversarial Lo + Lygpn + Loy + Loan + Licacn TF
auto-encoder
CCD-GAN [93] text~text An unsupervised model for improving CycleGAN stability Leyere + Loan TF
GcGAN [99] wild image~wild image An unsupervised model for geometry-consistent domain mapping Leyere + Lyis + Loan + Loro PT
GM-GAN [102] face~face A supervised Gaussian Mixture GAN for conditional sampling Loan + Lagy TF
GANVO [97] video~image An unsupervised model for depth map estimation Lian + Logy TF
VoS-GAN [106] video~image An unsupervised learning model by using self-supervision Ly, PT+TF
mechanism
WaterGAN [104] video~image Unsupervised depth pairings for color correction Loy TF
least square loss the model performs more stably and generates higher apply a pairwise distance loss:
realistic images: 1
Caist(Gap> Gpa) = Ex xinp, | 6—(||X[ =Xl = py)
1.564n(Gap D) = Ey ~ ppp[(Dp(h) — 1)°] A (25)

) 24
+E; ~ pa@[Dp(Gyp(@)7]

Secondly, to reduce the model oscillation, the discriminators are
update D, and Dy by using the previous generated images. The pro-
posed model has significant performance and the results are widely
evaluated against those of [43,107]. In [203] and [188], the authors
proposed contextual generative adversarial networks for face aging.”
The model contains a conditional transformation network [204] and
two discriminative networks. The conditional transformation network
handles the aging procedure with a number of residual blocks and the
discriminator guide the synthesized face to have real distribution. Some
generated sample results are shown in Fig. 21. Benaim and Wolf [57]
found out that, the distance ||X; — X;|| between the images in the
source domain A is extremely dependent on their counterparts distance
IGap(X;) — Gop(X))|l in the target domain B. If d, is the distance
X, — X,|| and |d| high dependency signifies that Xd,d, accordingly
will be high.

The distances in the source domain d, are constant and the extend-
ing Xd,d, leads to a large value for the loss, and in order to reduce
it, the authors proposed X||d, — d,||. In [163] the authors proposed to

7 https://github.com/dawei6875797 /Face-Aging-with-Identity-Preserved-
Conditional-Generative- Adversarial-Networks
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— L IG 45X = G g (XD = )]
]

while u,, up(o,,0p) are the deviations of the distances in the pre-
training sets of domains A and B. To maintain the gradient descent
where only single sample at a time is fed into the model, another
self-distance constriction is proposed as follows:

1
self—dist(Gap> Gpa) = EprA|G—(||L(X) = R = py)
. 4 (26)
- 1G4 LX) — G4 p(RCX)IIT = gl
B

while L(x) and R(X) represent the left and right sides of the image X
in this method, only the right and left sides of the images participated
for calculating u,, up. Accordingly, the general loss is calculated by:

¢ =a120GaN(Gap: D) + @138 Gan(Gpas Dy)
+24%4ist(G 4> Pa) + #2411 (G pa> PB)
+34% 501 f-dist(Gap>Pa) + @3glsel f — dist(Ggy, pg)
+a4fcyc (GAB s GBA)
in which 7,,(G,p,Gp,) are respectively formulated in Egs. (20) and
(21) for both the domains. As earlier discussed, in addition to reducing
the reconstruction error at ground truth pixel level, it is also possible to
perform the process at higher feature levels [61]. The authors proposed
to implement two neural networks in the G, a CN N, and a transposed

CNN, in which G = (g € f). In this model, f performs as a feature
extractor and the network tries to keep high level features of any input

27)
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image. Here X represents the source domain and X, denotes the target
domain. For the input image x € X, the G result is G(x) = g(f(x)).
Consequently, the reconstruction error with a distance d can be defined
as:

Coonst =, d(f(x, F&F)))

XEX;

(28)

Liu et al. [79,87] proposed an architecture for unsupervised image-
to-image translation. In the proposed architecture, there are two en-
coders, generators and discriminators, in which both the encoders share
the same latent space. The model applies weight sharing in the last
layers of the encoders and it successfully learns the joint distribution
without any tuple of corresponding images. The applications also go to
domain adaptation and image transformation. In Fig. 22, we showed
some sample results achieved by [87] that translates images between
the synthetic images in the SYNTHIA dataset and the real images in
the Cityscape dataset. Fig. 23 shows some sample male to female
translation results by [79]. In [200], the author proposed a progres-
sively growing encoder-generator for translating unlabeled images from
one domain into analog images in another domain. The model is
used for translating face images, without supervised one-to-one im-
age mapping. Fig. 26 compares the FID scores of ComboGAN [195],
BicycleGAN [107], Sem-GAN [198], In2i [72], and IR2VI [78] while
training on CelebA dataset. Furthermore, Royer et al. [1] introduced
XGAN architecture that consists of a double adversarial auto-encoder
to captures a shared representation of the domain semantic content
in an unsupervised manner, by jointly learning the domain-to-domain
image translations in both directions. This model reported promising
qualitative results for the task of face-to-cartoon translation.

Fig. 24 shows some sample results of XGAN. The current approaches
only can transform images between two domains, however if we want
to transform an image between several domains, a separate generator
should be trained on each domain, which has high computation costs.
To deal with this problem, Choi et al. [149] suggested using a generator
that has the ability of generating the images of different domains. The
authors proposed a network that can perform image-to-image trans-
lations for multiple domains. The architecture handles simultaneous
training of multiple datasets with different domains in a single network.
The model has superior performance on a facial attribute transfer and a
facial expression synthesis tasks. Table 3 summarizes the input, output,
characteristics, learning procedure and implementation platform of
several models presented in this review. Mordido et al. [68] proposed to
incorporate adversarial dropout in GAN, by dropping out, the feedback
of the discriminator in the framework with some probability at the
end of each batch. The proposed model releases the generator not
to constrain its output to satisfy a single discriminator, but, instead,
to fulfill a dynamic ensemble of discriminators. The model has high
convergence and the model tested on several dataset, but the authors
did not discuss the efficiency of the model. Fig. 25 shows some sample
translation results by [87]. In Fig. 27(a) we show some generated
results by BEGAN [116], CGAN [90], LSGAN [130], StarGAN [150],
and DA-GAN [69] on four datasets, we also in Fig. 27(b) compare the
inception and FID scores of these methods while training on CelebA.

7. Conclusion and discussion

This paper reviewed the existing GAN-variants for synthetic image
generation based on architecture, performance, and stable training.
We also reviewed the current GAN-related research architecture, loss
functions, and datasets that are generally used for synthetic image gen-
eration. In particular, it is difficult, yet important for image synthesis
tasks to explicitly define the loss. For instance, to perform style transfer,
it is difficult to set a loss function to evaluate the matching of an image
to a certain style. Each input image in synthetic image generation may
have several legitimate outputs, however these outputs may not cover

142

Information Fusion 72 (2021) 126-146

all the conditions. For synthetic image generation, several recent super-
vised and unsupervised methods have been reviewed, their strengths
and weaknesses are thoroughly discussed.

Although we have conducted several experimental evaluation, GANs
for synthetic image generation, still lacks a thorough study of domain
adaptation and transfer learning. In addition, the computer vision
community would benefit from an extension of this practical study
that compares in addition to accuracy, the training and testing time
of these models. Moreover, we think that the effect of normalization
models on the learning capabilities of CNNs should also be thoroughly
explored. At the time of this writing, there are a few published works
on using GANs for video, time series generation, and natural language
processing. Future research should be directed towards investigating
the use of GANs in those fields as well as others.
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